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Abstract
We introduce the problem of private signaling. In this

problem, a sender posts a message on a certain location of
a public bulletin board, and then posts a signal that allows
only the intended recipient (and no one else) to learn that it is
the recipient of the message posted at that location. Besides
privacy, two efficiency requirements must be met. First, the
sender and recipient do not participate in any out-of-band
communication. Second, the overhead of the recipient must
be (much) better than scanning the entire board.

Existing techniques, such as server-aided fuzzy message
detection (Beck et al., CCS’21), could be employed to solve
the private signaling problem. However, this solution leads to
a trade-off between privacy and efficiency, where the complex-
ity of the recipient grows with the required privacy. Specifi-
cally, this would require a scan of the entire board to obtain
full privacy for the recipient.

In this work, we present a server-aided solution to the pri-
vate signaling problem that guarantees full privacy for all
recipients while requiring only constant amount of work for
both the recipient and the sender.

Specifically, we provide three contributions: First, we pro-
vide a formal definition of private signaling in the Universal
Composability (UC) framework and show that it captures
several real-world settings where recipient anonymity is de-
sired. Second, we present two server-aided protocols that
UC-realize our definitions: one using a single server equipped
with a trusted execution environment, and one based on two
servers that employ garbled circuits. Third, we provide an
open-source implementation of both of our protocols, evaluate
their performance, and identify for which sets of parameters
they can be practical.

1 Introduction

Problem Statement. We focus on the problem of recip-
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ient anonymity. In its abstraction, there are M recipi-
ents R1, . . . ,RM publicly identified by their public keys
pk1, . . . , pkM . There is a public venue such as a bulletin board
that collects messages (m1,m2,m3, . . .) from senders and are
intended for recipients. The sender who posted message m j
on the board, will also post an auxiliary information c that
signals the intended recipient, say Ri, that there is a message
for them at a location j of the board. The problem is: how
can this sender craft a signal c so that by looking at c, no
one, except Ri, can detect who the intended recipient is for
m j, with the sender having no communication or prior shared
state with Ri?

This abstraction captures various concrete problems such
as anonymous messaging [10] and stealth payments [12]. We
describe these specific applications in greater length in Sec 2.1.
For the remainder of the introduction, we will focus on the
general abstraction above.

Private Signaling: the Naive Inefficient Approach. A
straightforward (though inefficient) solution for the private
signaling problem would be as follows. The sender who in-
tends to communicate that a message is located at loc to Ri
can simply encrypt loc with the public key pki using a key-
private CPA-secure encryption scheme 1 and then only post
the ciphertext c on the board. In this case, the signal is the
ciphertext itself. Then, each recipient can periodically down-
load all ciphertexts posted on the board, attempt to decrypt
each ciphertext to detect where the messages for the recipi-
ent are. Thanks to the key-privacy property of the encryption
scheme, this solution gives full privacy to each recipient, since
by looking at the ciphertext, every public key is equally likely
to unlock it. Here full means that the anonymity set consti-
tutes the entire set of (honest) recipients. Furthermore, this
solution has no overhead on the sender, who simply performs
one encryption per signal. However, full privacy comes with
a high cost for each recipient since it needs to scan the entire
board to detect the signal. In this work, we are interested in
reducing the communication and computational complexity

1Key-private means that by looking at the ciphertext, no one can distin-
guish which public key was used for encrypting the message [6].



of the recipient.
Efficient Private Signaling: the Need for a Server. Can we

do better than a linear scan of the board? First, note that with-
out any external help, such as a server dedicated to filtering
messages for each recipient, a recipient must read the entire
list of, say N, signals to “see” which one is intended for them.
Note that this is true regardless of the anonymity guarantees.
Hence, a serverless solution would lead to complexity O(N)
for each recipient. Alternatively, one can trade the search
time with the signal size. Namely, search complexity can be
lowered to O(logN) per message for the recipient if the size
of the signal grows with the total number of possible recipi-
ents, that is, O(M), which can be still very inefficient for even
moderate M (we describe this in the full version [20]).

Thus, for any non-trivial improvement of the complexity
cost for the recipient, we need to use an external server to help
with the filtering. In a very recent work [5] Beck et al. intro-
duced the concept of Fuzzy Message Detection (FMD), a new
cryptographic primitive that allows a third party to perform
coarse filtering of messages for each recipient. Coarse means
that, for each recipient Ri, the server will detect ciphertexts
and maintain a list of ciphertexts that could be intended for
Ri. This list includes a certain fraction pi of false positive—
hence fuzzy detection. The higher the rate pi of false positive
for Ri, the longer the list of ciphertexts detected for Ri, and
the higher the anonymity set for Ri. This approach, however,
presents major drawbacks for the recipient. First, the work
done by the recipient grows proportionally to the amount of
anonymity it desires. Specifically, the work done by recipient
Ri is O(pi ·N), which translates into O(1 ·N) work if the high-
est privacy is required. Second, even if a recipient Ri chooses
the highest false positive rate pi = 1, this would still not guar-
antee Ri to have full privacy (recall, full privacy means that
a signal can be associated to every (honest) recipient with
the same probability) if other honest recipients have chosen
smaller error rates.

A natural question arises: is there a solution for the private
signaling problem that achieves full anonymity in the presence
of untrusted servers and has only constant complexity for the
recipient?

1.1 Our contribution

We answer affirmatively to the question above. We provide
three contributions:
1. Formalization of the Private Signaling Problem. We

introduce the private signaling problem and provide a
formal definition in the Universal Composability Frame-
work [9]. Thus, we define an ideal functionality FprivSignal

that captures the correctness and privacy guarantees that
we expect from a private signaling system. Previous work
on related problems either did not provide any formal
definition [17, 22, 32], or provide much weaker security
guarantees [5]. We elaborate in Sec 5.

2. Protocols for private signaling with constant recipient
overhead and provable UC-security. The focus of this
work is to minimize the costs for the recipients and senders.
We provide two protocols that UC-realize the ideal func-
tionality FprivSignal where a sender only needs to perform
one (or two ) encryptions to compute a signal, and a re-
cipient does not need to perform any scan, and will just
perform a number of decryptions that matches the number
of received signals. We provide two protocols: one based
on garbled circuits that requires two servers, and one lever-
aging on a Trusted Execution Environment (TEE) which
requires a single server only (our approach is explained in
Sec. 3).

3. Open-source Implementations. We implement both our
protocols and measure their efficiency. We compare our
performances with related work (we elaborate in Sec. 9).

2 Background for Private Signaling

2.1 Applications of Private Signaling

Private signaling is a powerful abstraction since many real-
world applications can be seen as a special case of it. In the
following, we highlight two prominent and timely problems
that can be cast as private signaling problems and conse-
quently solved with our proposed solutions.
Stealth addresses and payments. In cryptocurrencies (es-
pecially account-based ones [31]) it is common to use static,
public identities or addresses. However, sending recurrent
payments (e.g., salaries, donations, other regular purchases)
to a static address that is publicly linked to an entity is harmful
to both sender and recipient anonymity. To avert this issue,
senders can generate so-called stealth addresses for their re-
cipients [12]. More specifically, given a recipient’s public ad-
dress, the sender can non-interactively generate new “stealth”
addresses for the intended recipient that is unlinkable to the
recipient’s static, public address [26]. Stealth addresses can
only be redeemed by the true recipients. However, the diffi-
culty is that recipients lack an efficient way to detect which
stealth address belongs to them and are redeemable by them.
Current implementations of stealth address payment systems
apply the simple linear scan of the board as described earlier.2

Private signaling can be seen as a solution to alleviate the
computation complexity of the recipient. More specifically,
with private signaling, a sender first creates a transaction with
a stealth address of recipient Ri and posts it to the board. Once
the transaction is confirmed and the location of the transaction
is known on the board, the sender sends a private signal to
the server, who obliviously stores it. Now a recipient only
needs to ask the server for its list of signals so it can identify
its stealth address transactions directly.

2See: Umbra Cash (https://app.umbra.cash)

https://app.umbra.cash


Anonymous messaging. Modern private messaging applica-
tions are mostly focused on providing and improving sender
anonymity [10, 21], e.g., Signal’s sealed sender function-
ality. In anonymous messaging applications, senders post
their messages to one (or more) untrusted store-and-forward
server(s) [30] or to a shared public bulletin board, as in Ri-
poste [10], where the servers need to maintain the board.
Private signaling easily captures this problem in the following
way: A sender first posts encrypted messages on a public
board. The sender then sends the locations of these messages
to the server in a privacy-preserving way, such that only the
recipient can retrieve the locations from the servers at a later
point in time. Once the recipient has these locations it can
simply decrypt the corresponding messages from the board
to get their messages. Thus anonymous messaging can be
seen as special case of private signaling. Moreover, using our
techniques, it is guaranteed that a recipient can retrieve its
messages quickly and one can have arbitrary sized messages
that can be stored on the public board.

2.2 Related and Concurrent Work
The closest work to ours is Fuzzy Message Detection by Beck
et al [5]. Subsequently to our work, the definition of Oblivious
Message Retrieval was introduced by Liu et al [19]. In this
section we describe these works. A comparison in terms of
asymptotic efficiency in provided in Table 1 and concrete
efficiency in Table 4.

Fuzzy Message Detection (FMD) [5] Fuzzy message de-
tection is a primitive that allows a server to do outsourced
message detection. The recipient of a message provides the
server with a “fuzzy” detection key that identifies the rele-
vant ciphertexts as well non-matching flag ciphertexts with
some false positive rate. This false positive rate is set by the
recipient of the messages. The untrusted server that performs
the fuzzy detection, must be unable to distinguish between a
correct detection result and a false-positive.
Privacy. The privacy guaranteed by FMD is k-anonymity,
which suffers of known attacks ( [18] [28] show how the
untrusted server can break recipient unlinkability and relation-
ship anonymity). In this work, we aim at the strongest privacy
guarantee, where each recipient has an anonymity set that is
as large as the total number of honest recipients and senders
(see Sec 5 to for details on our definition).
Efficiency. In FMD, the senders need to compute γ (a constant
of the order 10) number of encryptions and send them to the
server. If N is the total number of messages that were sent to
the server, each recipient will receive ρN messages where ρ

is a false positive rate. The recipient then would need to do γ

decryptions on each of these messages to test if the message is
actually for them or if it’s a false positive. Note that recipients
determine ρ in FMD and can therefore trade-off privacy for
efficiency. By setting ρ to be a small value, the number of
decryptions done by the recipient will also reduce. In this

work instead we aim to minimize the work of the sender and
the receiver. As we shall see in Sec 6 and 7 and as depicted
in Table 1, in our protocol the sender only sends one (or two)
encryptions, and the recipient needs to decrypt exactly the
number of signals it receives.
Assumptions and Threat-model. FMD relies on a single un-
trusted server only. Instead, in this work we rely either on
two non-colluding servers, or on the trusted execution envi-
ronment (TEE) [11, 24]. In FMD, security is provided via
game-based proofs in presence of a semi-honest server. In
contrast, in this work we define an ideal functionality for
private signaling in the UC-model and consider either two
semi-honest server or a malicious server equipped with TEE.

Oblivious Message Retrieval (OMR) [19] OMR is a recent
work by Liu et al. that appeared subsequently to our work.
OMR is another primitive that allows the recipient to provide
a detection key to an untrusted server so that they can receive
pertinent private messages that are posted to a public board.
Their aim is to not only detect messages but also to retrieve
the messages from the server. They present two protocols
OMR2 and OMR3, based on fully homomorphic encryption
(FHE). In their protocols, a sender encrypts the message under
the receiver’s public key and post it to a board. A recipient
requests its messages from a server by sending a detection
(FHE key) along with a bound on the number of messages
it may receive. The server then rencrypts each ciphertext on
the board under this new FHE key such that it either decrypts
to the message if it corresponds to the recipient or to zero
otherwise. Finally, the encryptions are cleverly compacted so
that the recipient does not have to do decryptions linear in the
number of total messages on the board.
Efficiency. OMR2 requires the receiver to do O(N) decryp-
tions, where N is the total number of messages on the board.
OMR3 on the other hand, is optimized with compact detection
but still requires O(poly log(N)) computation for the recipi-
ent. In contrast, in our protocol recipients will only need to
perform decryptions equal to the number of messages they
receive on the board. In both OMR2 and OMR3, the detection
cost for the servers grows with N, whereas in our protocols,
the detection cost grows with M, which is the number of
recipients that are served by that server.
Assumptions and Threat-model. As in the case of FMD [5],
both OMR2 and OMR3 rely only on a single untrusted server,
whereas we make stronger assumptions as described above.
In OMR, the authors present game-based proofs against a
semi-honest adversary, whereas we present UC proofs.
Other properties. OMR achieves DoS resistance, where DoS
attacks are defined as signals being pertinent for more than
one receiver. Moreover, their protocols allow the receiver
to determine the value ℓ which is the number of messages
they expect to receive, and the recipients also get an explicit
overflow message in the case the specified ℓ is less than the
number of messages they actually receive.



Privacy Security Recipient Server #Servers Setup Assumptions
Naïve scan full – O(N) /0 0 /0

FMD [5] k-anon G,SH O(pN) O(pM) 1 /0

OMR2 [19] full G, SH O(N + log2(k̂) log(ε−1
n )+ k̂3) O(N(log2(k̂)+ logε−1

p )) 1 /0

OMR3 [19] full G, SH O(k̂ log(k̂) log(ε−1
n ) log4(N)+ k̂3) O(N(log(k̂) log(ε−1

n ) log4(N)+ logε−1
p )) 1 /0

ΠTEE full UC, M O(ℓ̄) O(ℓM) 1 TEE
ΠGC full UC, SH O(ℓ̄) O(ℓM) 2 /0

Table 1: Comparing privacy-preserving message detection schemes in terms of the achieved privacy guarantees and the
computational complexity of the participants. SH and M denotes semi-honest and malicious security, respectively. N denotes
the total number of messages in the system and p denotes the false positive rate (0≤ p≤ 1) set individually by recipients in
the Fuzzy Message Detection scheme (FMD) [5]. For simplicity, we assume that each recipient has the same false positive
rate p. ℓ denotes the maximum number of detectable incoming messages per each recipient and ℓ̄ denotes the actual number of
messages that are sent to a recipient. From OMR [19] we have k̂ = Õ(ℓ̄+ εpN). Moreover, εp is a false positive rate and εn is a
false negative rate. Finally the server computation is based on a single message received by the server(s).

Metadata-private messaging systems Previous works [29]
and [16] describe dialing and add-friend protocols. These
protocols enable one party to add another party as a friend and
establish a connection with this friend such that an adversary
cannot learn the friend’s identity. This can be seen as a special
case of the signaling problem, but these works do not consider
the efficiency of the two parties that are involved. They require
that all parties continuously send messages over the network
(either cover traffic or actual protocol messages).

3 Our Approach to Build Private Signalling

We present two instantiations of the ideal functionality
FprivSignal that achieve constant communication and compu-
tation complexity for the recipient. Both instantiations are
based on the same high-level approach of obliviously updat-
ing the list for the recipient. We explain the general approach
first, and then the two techniques for implementing it.

Our approach is based on the following natural idea. As-
sume for a moment that privacy was not a concern, but only
performance is, i.e., we want the overhead of the recipient to
be minimal and depend only on the number of messages it re-
ceives. The recipients hire a Srv and register themselves with
the server. (See Fig 1) The sender after posting a message to
the board, sends a signal which is the encryption (under the pk
of the server) of the the recipient’s identity and the location of
the message to the Srv through the board. The Srv maintains a
table T, with one row for each recipient. It decrypts the signal
using its own secret key and adds the signal to the row of
recipient. When a recipient Ri sends RECEIVE to the server, it
simply responds with the corresponding row. Now, to achieve
privacy, we “just” need to require the server to update this
table obliviously. In other words, we need to devise a mech-
anism by which, on input an encrypted signal for a certain
recipient Ri, the server can blindly and correctly update the
i-th row without learning anything about the recipient who
got the signal.

Finally, note that each recipient might receives a different

R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) - -

... ... ... m ... ... ...

5 6 87

➌(SEND,ct = E(epk, [R3,7]))

Ri

➊(Setup, pki)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) E(pk3,7) -

SERVER

R3 E(pk3,2) E(pk3,7)

Figure 1: The no-privacy solution: 1 Each recipient Ri reg-
isters with the Srv and sends its pki. 2 A sender writes a
message m for recipient R3 on position 7 of the board. 3
Sender sends a signal to the Srv for the posted message. The
signal is an encryption of R3,7 under the public key of the
server. 4 The server decrypts the signal using its secret key.
The Srv then adds the encryption to the next available location
in R3’s row. 5 R3 requests its row from the Srv in an authen-
ticated way, and 6 , the Srv responds with the encryptions
in that row.

number of signals over time. To prevent leaking of this infor-
mation, in our protocol, we fix the size of each recipients’ row
to be an upper bound ℓ, reflecting the signals recipients are
expected to receive in a certain interval of time (e.g., per day,
per-month, depending on the application).

TEE-based Solution To update the table of signals T obliv-
iously by employing a single untrusted server, we leverage
a trusted execution environment (TEE). Recall that a TEE
allows a client to perform a private computation on a secret in-
put, embedded in the TEE, through an untrusted server, called
the host. TEEs are used to build virtual enclaves. A client can
register with the enclave within the server and is guaranteed



R1 6 0 0

R2 2 3 0

R3 2 0 0

... ... ... m ... ... ...

5 6 87

➌
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➎(RECEIVE, R3)
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➋
(W

RITE
, m

)

➍

➊(Setup, pki)

R1 6 0 0

R2 1 3 0

R3 2 7 0

R3 E(pk3,2) E(pk3,7) E(pk3,0)

SERVER

Figure 2: Single-server protocol. 1 Ri securely communi-
cates its pki with the enclave. 2 3 The sender writes a
message m for recipient R3 on position 7 of the board and
sends a signal (encryption of 7 under TEE’s public key epk)
to the Srv for the posted message. 4 The enclave takes as
input the encryption of the signal, decrypts it and updates
column 2 in R3’s row with 7. 5 R3 requests for its row via
the server to the enclave. 6 If valid, the TEE releases R3’s
row encrypted under the public key of R3 via the server.

that all computations inside the enclave are hidden from the
server. With this tool in hand, the idea is that the recipients
will first register with the server by providing their public key.

After this setup phase where recipients register with the
enclave, the enclave maintains a vector of zeros for each user
i. This is equivalent to initializing the table T.

Each enclave will implement the following program: on
input a signal ciphertext ctSignal and the table T, first decrypt
ctSignal with its secret key. If the decryption results in a valid
plaintext location loc and recipient index i, then the enclave
will update the row i of the table T with the loc in the next
available position, and just re-write the other indexes. As in
the solution with no privacy, a sender can communicate a
signal for location loc to Ri, by simply encrypting the location
and the recipient index under the enclave’s public key pk, that
is, ctSignal = Enc(pk,Ri∥loc) and send ctSignal to the server.
The server will then run the enclave on input ctSignal,T to run
the above-described program.

The actual protocol is slightly more complex as it requires a
mechanism to prevent replay attacks from the untrusted server
against the enclave. For the UC-security proof to go through,
we need a mechanism to enforce that even if server and re-
cipient are corrupt and collude, any attack is still simulatable
in the ideal world. This requires a mechanism by which, to
retrieve its signals, a recipient must first obtain a token from
the TEE in every access. The details of the protocol are pro-
vided in Sec 6, and the protocol is described in Fig 7. We
formally prove that our protocol UC-realizes the ideal private
signal functionality. For the formal proof, we use the UC-

R1 4 7 9

R2 3 2 8

R3 4 3 5

... ... ... m ... ... ...

5 6 87

➌(SEND, E(pk1, R
1 = 2, loc1 =3)

Ri

➊(Setup, Σ.vki)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 2 7 9

R2 2 1 8

R3 6 3 5

R1 3 2 3

R2 7 4 8

R3 5 2 5

R1 5 2 3

R2 6 7 8

R3 7 5 5

Compute
7⨁5 = 2
5⨁2 = 7
5⨁5 = 0

E(pk2, R
2 =1, loc2 =4))

R3 5 2 5

R3 7 5 5

SERVER1 SERVER2

Figure 3: Two-server. 1 Ri registers with the two servers.
2 Sender writes message m for R3 on position 7 of the

board. 3 Create shares of 3 e.g. (2,1) and 7 = (3,4), send
(2,3) to Srv1 and (1,4) to Srv2. 4 Srv1 and Srv2 run a 2PC
with inputs (T1,2,3) and (T2,1,4) and some fresh random-
ness and output new tables T1 and T2 such that in the next
available position of R3’s row (column 2), is updated with
fresh shares of 7, e.g. (5 and 2) and re-randomize all other
indices while maintaining the invariant that T1[i][ j]⊕T2[i][ j]
remains the same. 5 R3 requests its row. 6 If valid, Srv1
sends [7,5,5] and Srv2 sends [5,2,5]. R3 reconstructs locations
by computing [7⊕5,5⊕2,5⊕5] = [2,7,0].

formalization of TEE introduced by Pass et al. in [24] as the
ideal functionality Gatt. Our proof is provided in the full ver-
sion [20] and withstands malicious adversaries (for privacy).
We present an illustration of this single-server approach in
Fig 2. In the above approach we assumed that the enclave can
store the table T in its internal memory. We note that this need
not always be possible since the total space that is available in
an enclave’s (Intel SGX) internal memory is only 128MB. In
the full version [20] we present a modification of the protocol
where the T is stored by the server.
Limitations of Intel SGX: TEEs need to rely on a trusted
authority (Intel in the case of Intel SGX), they are known to
be prone to some side channel attacks [8] [14] and finally
there are memory limitations [11]

Two-server Solution To accomplish the goal of obliviously
updating the table of signals T, we can use two servers Srv1
and Srv2 and have the table secret-shared among them. Srv1
(resp., Srv2) holds a table T1 (resp., T2) of strings that look
random to Srv1(resp., Srv2), but such that T1⊕T2 = T.

Say a sender S posted a message m intended for R on the
board that appears in location loc. To prepare a signal for
R concerning location loc the sender will perform a simple
operation. It will secret-share the input R, loc into random two
shares R(1),R(2) and loc(1), loc(2) such that R = R(1)⊕R(2)

and loc = loc(1)⊕ loc(2).
Next, servers Srv1,Srv2 will update their tables by run-

ning a secure computation protocol (e.g., Yao’s garbled
circuits [7, 33]), participating with their own secret input



R(1), loc(1),T1 (resp., R(2), loc(2),T2). The function being
computed performs the following three elementary operations.
(1) Reconstruct R and loc by xoring the shares. (2) Update
the R-th row of the table to add loc to the first available index.
(3) Re-randomize every other row. Note that, at the end of the
secure computation of this function, each server receives a
fresh share of the updated table, thus leaking no information
about which row and column was actually updated.

When a recipient Ri wishes to retrieve their signals, it will
send i (in an authenticating manner) to both servers and re-
ceive T1[i],T2[i] from which it can recover the locations by
just performing xor. Upon each retrieve, the recipient’s row is
flushed.

Our protocol provides full privacy due to the following
features: at any point, each server only owns only one share
of the signals and the table of signals, and upon each update,
the server obtains a re-randomization of the entire table, per-
formed with fresh randomness that is sampled by both servers,
which leaks no information about the row that was actually
updated. We provide formal proofs of this work in the full
version [20] In our proof, servers can collude with recipients
and sender but (of course) cannot collude with each other.
For this protocol, our proofs are in the semi-honest setting.
Finally, we note that we can extend this idea to a multi-server
setting, where say n servers participate in an MPC to process
a signal and update the shares of the table of signals.

The tradeoff here would be that sender will need to share the
location and recipient index among n servers, and the recipient
would need to recombine the shares received from n servers,
but on the positive side, one can have weaker assumptions on
the trust and non-collusion between the servers.

4 Preliminaries

Notation Let λ be the security parameter, poly(·) be a poly-
nomial function and let negl(λ) be a negligible function. M
denotes the total number of recipients.

Public Board: Gledger. We assume that all parties have read
and write access to a public board, which we abstract via a
public ledger ideal functionality Gledger functionality intro-
duced in [3]. Gledger maintains a global variable called state

and parties can read from and write to this global state through
the commands READ and SUBMIT. An abridged version of
Gledger is presented in the App A.4, Fig. 18.

In this section we present the crucial definitions and secu-
rity guarantees of the primitives used in our protocols. We
present the rest of the primitives more formally in App A.

Trusted Execution Environment: Gatt. The TEE is modeled
as a single, globally-shared ideal functionality that is denoted
as Gatt following the definition of [24]. The Gatt functionality
is depicted in Fig. 4 There are two types of invocations to the
trusted hardware - installation, that allows to install a software

Gatt[Σ, reg]

//initialization
On initialize: (mpk,msk) :=
Σ.KeyGen(1λ),(epk,esk) := Enc.KeyGen(1λ),T =
/0

// public query interface:
On receive* getpk() respond with (mpk,epk)

Enclave operations

//local interface – install an enclave:
On receive* install(idx,Prog) from some
P ∈ reg:
• if P is honest, assert idx = sid
• generate nonce eid ∈ {0,1}λ, store

T [eid,P ] := (idx,Prog,⃗0), send eid to P .
//local interface – resume an enclave:
On receive* resume(eid, inp) from some P ∈
reg:
• let (idx,Prog,mem) := T (eid,P ), abort if

not found
• let (outp,mem) := Prog(inp,mem), up-

date T [eid,P ] := (idx,Prog,mem)
• let σ := Σ.Sigmsk(idx,eid,Prog,outp) and

send (outp,σ) to P .

Figure 4: Global functionality modeling SGX-like secure
processor [24]

and a stateful resume, that allows to execute it on an input.
More details are provided in App A.3.

Garbled Circuits A garbling scheme G (described in
App. A.2) consists of five polynomial time algorithms
(Garble,Encode,Eval,Decode,evaluate). Garble takes as in-
put a function f and returns a garbled circuit F , encoding
information e, and decoding information d. Encode takes
e and an input x, and returns a garbled input X . Eval takes
in the garbled circuit F and X , and returns a garbled output
Y . Decode takes in the decoding information d and Y , and
returns the plaintext output y = f (x).

Oblivious Transfer In the oblivious transfer functionality
(formally defined in App A.1, Fig 16), sender S has a pair of
input strings s0 and s1 and a receiver R has a choice bit b. R
learns only sb while S learns nothing.



5 UC-Definition of Private Signaling

We define the problem of private signaling in the UC-
framework [9]. In this framework, the security properties
expected by a system are defined through the description of an
ideal functionality. The ideal functionality is an ideal trusted
party that performs the task expected by the system in a trust-
worthy manner. When devising an ideal functionality, one
describes the ideal properties that the system should achieve,
as well as the information that the system will inherently leak.

For the task of private signaling, we want to capture two
properties: correctness and privacy. Correctness means that a
recipient Ri should be able to learn all signals that are intended
for them. Privacy means that by looking at the messages
exchanged in the protocol no one except Ri (and the senders
of the signals) should distinguish which signals are directed
to Ri. Furthermore, we want to capture the following inherent
leakage. First, an observer of the system can always learn
that a signal was posted for “someone” (for instance, just by
observing the board). Second, a protocol participant can learn
that a certain recipient is trying to retrieve their own signals
(for instance, in the serverless case, this can be detected by
observing that a node is downloading a big chunk of the board,
or in the server-aided case, it is just possible to observe that
Ri connected to the server).

Functionality FprivSignal

The functionality maintains a table denoted T indexed
by recipient R j, that contains information on the loca-
tions of signals for the corresponding recipient.
Sending a signal (SEND): Upon receiving
(SEND,R j, loc) from a sender Si, send (SEND,Si) to
the adversary. Upon receiving (SEND,ok) from the
adversary, append loc to T[R j].
Retrieving signals (RECEIVE): Upon receiving
(RECEIVE) from some R j, send (RECEIVE,R j) to the
adversary. Upon receiving (RECEIVE,ok) from the
adversary, send (RECEIVE,T[R j]) to the recipient R j
and update T[R j] = []

Figure 5: Private Signaling functionality

Private Signaling Ideal Functionality The functional-
ity FprivSignal provides the following interface - SEND and
RECEIVE. The ideal functionality allows parties to send sig-
nals to a receiver, that informs that there exists a message
at a particular location of the board maintained by an ideal
ledger functionality Gledger . To add a signal for a recipient
R j, a sender sends SEND command with the pair (R j, loc) to
the ideal functionality. The latter will store this information
for Ri in a table denoted T, and will send to the adversary
this information that a signal has been posted. This leakage

captures the fact that in real life it is easy for an observer to
detect that some sender is trying to send a message to some
recipient. However this is the only information that anyone
(except the sender, of course) will ever learn.

A recipient R j can later query the ideal functionality to
retrieve the signals that were sent to them. This is done using
the RECEIVE command. This command also instructs the
functionality to flush the row T[R j]. The ideal functionality
will return the list to R j and will inform the adversary that R j
has downloaded its private list of signals. Again, this captures
the fact that in a real-world system a global observer can detect
the fact that a certain device is trying to retrieve their signals
(e.g., by observing the traffic). Since the only information
leaked to the adversary is that a sender has posted a signal
and that a recipient has retrieved its signals we capture the
privacy requirement of private signaling.

Corruption model We consider two settings. In protocol
ΠTEE(Section 6) we consider a single-server with a TEE. Here
we assume that the server can be malicious but the TEE is
trusted. In protocol ΠGC (Section 7) we consider two-servers
that do not collude. Furthermore, we allow any collusion
between recipients and servers and prove that we achieve
only privacy against malicious adversaries.

Communication model In our protocols we do not allow
any out-of-band communication between the senders and the
recipients. All entities have access to a global ledger function-
ality - Gledger. We assume that recipients have direct channels
with the Srv(s). We show in Section 8 that our protocols can
be extended such that there are multiple instances of these
servers that serve different recipients.

6 Private Signaling Protocol with TEE (ΠTEE)

Gatt Secure processor functionality Figure 4
L⃗i Encrypted locations for Ri

ctkeys Encryption of encryption key and
verification key

indexi Next available index in L⃗i
ctri Counter to prevent replayability of signatures

ctSignal Encryption of loc
ctloc Encrypted locations returned on RECEIVE

mpk,msk Attestation keys of Gatt functionality
epk,esk Encryption keys of Gatt

Table 2: Notations for ΠTEE

The protocol ΠTEE assumes as hybrids a TEE functionality
- Gatt (defined in Sec 4). This TEE runs a program Prog that is
defined in Fig 6. We only present Prog here. Gatt attests (see
Figure 4) to any computation that is done inside the processor
and outputs a signed message to the server. As described
in Figure 4 the Gatt functionality generates a signing key



and an encryption key, and any entity can securely query
the functionality to get the signing verification key and the
encryption public key.

The TEE maintains a vector L⃗ for each recipient. Each re-
cipient Ri registers with the Gatt functionality by sending it a
“setup” command through the server where it communicates
its public key and verification key to the Gatt functionality.
The program then initializes a vector L⃗i with all zeros corre-
sponding to this recipient.

To send a signal to a recipient Ri, the sender encrypts the
public key of the recipient along with the location of the mes-
sage - (pki, loc), under the public key of the processor epkand
submits this as a transaction to the Gledger functionality. The
Srv sends a READ command to the Gledger functionality and
retrieves the signals. To process these signals, the Srv inputs
(“send”,ctSignal) to the TEE. The TEE decrypts ctSignal to
get the public key pki of the recipient and location loc. The
vector L⃗i for recipient Ri is updated with the loc and all other
indices of L⃗i and all other L⃗ j for j ̸= i are rewritten so that a
malicious server that may observe memory access patterns
cannot trivially learn the recipient of the signal.

On input* (“setup”,ctkeys)
Compute (pk,Σ.vk) = Dec(esk,ctkeys).
Compute L⃗ = {0}ℓj=0
Set index= 0 and ctr = 0
Initialize T [pk] = (⃗L,Σ.vk, index,ctr)
return pk

On input* (“send”,ctSignal)
[msg[0],msg[1]] ← Dec(esk,ctSignal) and
msg[0] = pk
Read T [pk] = (⃗L,Σ.vk, index,ctr)
Update index= (index+1) mod ℓ,
Update L⃗[index] =msg[1]
Rewrite L⃗[ j] for j ̸= index
Rewrite T [i] for all i ̸= pk

On input* (“receive”,(ctr′,σ))
Read T [pk] = (⃗L,Σ.vk, index,ctr)
if Σ.Ver(Σ.vk,ctr′,σ) = 1 and ctr = ctr′ then

Let (loc1 . . . locℓ) = L⃗
Compute c⃗tloc = Encpk(loc1), . . . , Encpk(locℓ)

Update ctr= ctr+1, index= 0 and L⃗= {0}ℓj=0
return (c⃗tloc)

else
return ⊥

Figure 6: Program Prog[ℓ] run by Gatt

To receive its list of signals, a recipient Ri sends a signature
along with a counter value denoted ctr. The TEE authenticates
the recipient and checks that the counter value matches with

the internally stored counter value of the recipient.

Enclave setup
1. Srv: Run Gatt.install(Prog[ℓ]) to get eid.
Registration
Recipient Ri:
1. Let (mpk,epk) := Gatt.getpk()
2. Compute (pki,ski) ← Enc.KeyGen(1λ),

(Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
3. Set ctkeys,i = Enc(epk,(pki,Σ.vki)) and send

(“setup”,ctkeys,i) to Srv.
4. Await ((eid,pki),σT ) from Srv.
5. Assert Σ.Vermpk((eid,pki),σT ) = 1 and publish

pki. Initialize ctri = 0.
Srv:
1. Upon receiving (“setup”,ctkeys,i) from Ri, let

((pki),σT ) = Gatt.resume(eid,(“setup”,ctkeys,i).
Send ((eid,pki),σT ) to Ri.

Procedure (SEND,Ri, loc)
1. Sender S gets (mpk,epk) := Gatt.getpk() and

computes ctSignal = Enc(epk, [pki, loc]) and sends
(SUBMIT,(SEND,ctSignal)) to Gledger.

2. Srv: Send READ to Gledger and
upon receiving (SEND,ctSignal): Call
Gatt.resume(eid,(“send”,ctSignal)).

Procedure RECEIVE
Recipient Ri:
1. Compute σi = Sig(Σ.ski,ctri) and

send (RECEIVE,ctri,σi) to Srv. Await
((eid, c⃗tloc,i),σT ) from Srv

2. Assert Σ.Vermpk((eid, c⃗tloc,i),σT ) = 1
3. Initialize locns= [], j = 0

while (loc j = Dec(ski, c⃗tloc[ j])) ̸= 0 do
locns.add(loc j)
j = j+1

ctri = ctri +1
return locns.

Srv:
1. Upon receiving (RECEIVE,ctri,σi)

from Ri, let ((eid, c⃗tloc,i),σT ) =
Gatt.resume(eid,(“receive”,ctri,σi)).

2. Send ((eid, c⃗tloc,i),σT ) to Ri

Figure 7: The protocol for private signaling in the Gatt hybrid
world

If valid, the TEE returns encrypts the vector L⃗i under the
public key of the recipient Ri and resets the vector L⃗ to a vector
of all zeros and returns the list of encryptions. The recipient
decrypts each ciphertext until it decrypts to a zero which
indicates that the recipient has received all the messages. The
server does the checks to ensure that every request to the



TEE is fresh and prevents a replay attack where a malicious
server can simply send a previously received signature. This
prevents the TEE from resetting the vector L⃗ that corresponds
to an honest user.

Theorem 1. Assume that the signature scheme Σ is exis-
tentially unforgeable under chosen message attacks, the en-
cryption scheme Enc is CPA secure. Then the protocol ΠTEE

in the (Gatt, Gledger)-hybrid world UC-realizes the FprivSignal

functionality.

Proof. (Sketch) To prove UC-security, we need to show that
there exists a PPT simulator interacting with FprivSignal that
generates a transcript that is indistinguishable from the tran-
script generated in the real world where the adversary inter-
acts with (Gatt, Gledger) ideal functionalities. The simulator
internally simulates the Gatt and the Gledger functionalities to
the adversary. We consider two cases of corruption here and
in both cases we need to show that the simulator can simu-
late without learning the locations of honest recipients. We
briefly describe the main idea in the simulation of the above
mentioned corruption cases:
• Sender and server are corrupt: The simulator receives a
(“send”,ctSignal) command via the Gatt interface from the
adversary. The simulator decrypts ctSignal using the secret
key of the simulated TEE functionality esk and learns the
recipient (Ri) and the location (loc). The simulator sends
(SEND,Ri, loc) to the FprivSignal ideal functionality on behalf
of the adversary.

• Receiver and server are corrupt: The simulator receives
a (“receive”,ctr,σ) command via the Gatt interface from
the adversary. The simulator verifies the signature σ and
sends RECEIVE to the FprivSignal functionality on behalf of
the adversary. The simulator receives a vector of locations
that correspond to the adversary. The simulator encrypts
these locations under the public key of the receiver and
returns the vector of encryptions.
We defer the proofs to the full version of the paper [20].

7 Private Signaling with Two Servers ΠGC

ΠGC is run among two servers Srv1,Srv2. Each Srvi for i =
1,2 maintains a table (denoted by T(i)) that stores information
on the signals. The tables are M× ℓ matrices where each row
is associated with a recipient and ℓ is the maximum number
of signals that can be received by each recipient. The vector[
(T(1)[R][1]⊕T(2)[R][1]), . . . ,(T(1)[R][ℓ]⊕T(2)[R][ℓ])

]
repre-

sents a vector of locations that have been signaled by senders
to recipient R. The servers also maintain another table denoted
L(i), such that L(1)[R]⊕L(2)[R] stores the next available index
for recipient R. Our protocol uses: the ideal oblivious transfer
functionality Fot, garbled circuits and EUF-CMA signatures
(defined in Section 4 and Appendix A).
Registering with the servers: Each recipient Ri registers with
the two servers by sending shares of vector of ℓ+ 1 zeros.

T(i) Table (M× ℓ) of locations
maintained by Srvi

L(i) Table of available indices denoted index

R(i) Share of R received by Srvi

loc(i) Share of loc received by Srvi

r1
(i, j),r

2
(i, j) Randomness used for both T(1)[i][ j]

and T(2)[i][ j]
r1
(i),r

2
(i) Randomness used for both L(1)[i]

and L(2)[i]

Table 3: Notations for ΠGC

This is achieved by sending r0 . . .rℓ to both the servers. The
servers add a row to T(a) and L(a) - T(a)[R] = [r1 . . .rℓ] and
L(a)[R] = r0. The recipient Ri also sets a counter denoted ctri.
The ctri is updated each time, the recipient invokes a RECEIVE
command. The ctri along with the vectors are signed by the
recipient and sent to the servers. We will describe the use of
ctri later.
Sending a signal: The sender (denoted S) sending a sig-
nal to recipient R that a message exists for them at lo-
cation loc does the following: Create shares of pkR =

pk
(1)
R ⊕pk

(2)
R and loc= loc(1)⊕ loc(2) and compute ctSignal,a =

Enc(pka,(pk
(1)
R , loc(a))) where pka is the public key of Srva.

The sender then submits these encryptions as transactions to
the Gledger functionality. The servers periodically send READ

commands to Gledger to learn the signals. They then decrypt
the ctSignal,a to receive (pk

(1)
R , loc(a)). Since we assume that

the servers do not collude, they do not learn any information
about the recipient and the location. The two servers now run
a 2PC Protocol processSignal that updates the tables accord-
ing to the UpdateTable function. This function updates the
tables maintained by the two servers in the following way: for
the next available index (retrieved from the shares stored in
tables L(1) and L(2)) for receiver R store re-randomizations
of the received shares and for every other index re-randomize
the original shares. Since every index is updated, at the end
of the protocol the two servers do not know which index was
updated with the location, therefore hiding both the recipient’s
identity and the location of the signal. The UpdateTable also
updates the tables L(1) and L(2) such that for receiver R, the
tables store shares of an incremented index and for all other
parties the shares are simply rerandomized.
Receiving a signal: To receive their vector of signals, the re-
cipient sends a RECEIVE request to the two servers. This
request includes a signature on freshly sampled random val-
ues that serve as new shares for the corresponding row on the
table. Upon successful authentication, the servers send the cor-
responding table row to the receiver, who simply recombines
the shares to receive their signals.

Theorem 2. The protocol ΠGC UC-realizes the FprivSignal



Setup
Srva, for a ∈ {1,2}:
1. Generate encryption keys (pka,ska) ←

KeyGen(1λ) and publish pka
Recipient Ri:
1. (Σ.ski,Σ.vki)← Σ.KeyGen(1λ) and publish Σ.vki.
2. Sample ri←$ {0,1}λ for i ∈ [0, ℓ].
3. Initialize ctri = 0.
4. Compute σi = Σ.Sig(Σ.ski,((r0 . . . ,rℓ),ctri))
5. Send (Setup,(r0 . . . ,rℓ),ctri),σi) to Srvi.
Srva, for a ∈ {1,2}:
Upon receiving (Setup,((r0 . . . ,rℓ),ctri),σi) from
Ri:
1. If Σ.Ver(Σ.vki,(r0 . . . ,rℓ),ctri),σi) ̸= 1, ignore.
2. Else store ctri and set T(a)[Ri] = (r1, . . . ,rℓ) and

L(a)[Ri] = r0.
Procedure (SEND,R, loc)
Sender S:
1. Compute R(1) and R(2) s.t. R = R(1)⊕R(2).
2. Compute loc(1) and loc(2) s.t. loc= loc(1)⊕ loc(2)

3. Compute ctSignal,a = Enc(pka,Signala), where
Signala = (R(a), loc(a)) for a ∈ {1,2}

4. Send (SUBMIT,(SEND,ctSignal,1,ctSignal,2) to
Gledger.

Srva for a ∈ {1,2}:
1. Participate in protocol processSignal and update

(T(1),L(1)) and (T(2) L(2)) respectively.
Procedure RECEIVE
Recipient Ri:
1. Sample ri←$ {0,1}λ for i ∈ [0, ℓ].
2. Compute σi = Σ.Sig(Σ.ski,(r0, . . . ,rℓ,a,ctri)) for

a ∈ {1,2}.
3. Send (vki,(r0, . . . ,rℓ,a,ctri),σi) to Srva
4. Receive T(a)[Ri] from Srva
5. Compute T(1)[R][ j]⊕T(2)[R][ j] until T(1)[R][ j]⊕

T(2)[R][ j] = 0.
6. Update ctri = ctri +1
Srva:
1. Check if Σ.Ver(Σ.vki,(ctr

′,(r0, . . . ,rℓ)),σi) = 1
and ctr′ = ctri. Ignore if false.

2. Else send T(a)[R] to R.
3. Update ctri = ctri +1

Figure 8: Private signaling protocol with 2 servers

functionality in the Fot-hybrid model assuming secure gar-
bled circuits (Definition 1) and existential-unforgeable signa-
ture schemes.

Proof. (Sketch) To prove UC-security we need to show that
there exists a PPT simulator interacting with FprivSignal that
generates a transcript that is indistinguishable from the real

Protocol processSignal
Srva (where a ∈ {1,2}) upon sending READ to Gledger

and receiving ctSignal,a. Decrypt to get Signala.
1. Parse Signala = (R(a), loc(a))

2. Sample r(a)(i) ←{0,1}
λ for i ∈ [1,M], j ∈ [1, ℓ].

3. (As garbler of GC) Compute
Garble(1λ(UpdateTable)) → (F,e,d), where
F is the garbled circuit, and e encodes both
possible bits of |T(·)|, |loc(·)|, |R(1)|, |R(2)|, |L(1)|
, |L(2)|, |r(a)(i, j)| for i ∈ [1,M], j ∈ [1, ℓ],a ∈ {1,2}

and |r(a)(i) | for i ∈ [1,M],a ∈ {1,2}
4. Send (OT-SEND,(s0,s1)) to Fot, for

each pair of encoded keys of bits in
|T(·)|, |loc(·)|, |R(·)|, |L(·)|, |r(i, j)| for i ∈ [1,M], j ∈
[1, ℓ], |r(i)| for i ∈ [1,M]

5. Send (F,d) to the other server , where F in-
cludes the keys for its own inputs, i.e. r(i, j) for
i ∈ [1,M], j ∈ [1, ℓ], loc(a), R(a).

Srva, upon receiving (F,d) from the other server:
1. (As evaluator of GC) Upon receiving OT-SEND

from Fot, send (OT-RECEIVE,b) to Fot for each
bit b in T(a), loc(a),R(a),L(a),r(a)(i) for i∈ [1,M], j∈
[1, ℓ] and denote these strings as Xa

2. Compute Eval(F,(Xa)) to get Y
3. Compute Decode(d,Y ) to get a new T(a) and L(a)

Figure 9: GC protocol to update two tables

world where the adversary interacts with the Fot ideal func-
tionality that is internally simulated by the simulator. We
consider two cases of corruption:
• Sender and Srv1 are corrupt: The simulator simulates Srv2

and will receive shares R(2) and loc(2) from the corrupt
sender. It learns exact bits of loc(1) and R(1) via the Fot

functionality. The simulator computes R = R(1)⊕R2 and
loc = loc(1)⊕ loc(2) and sends (SEND,R, loc) to FprivSignal

on behalf of the corrupt sender.
• Receiver and Srv1 are corrupt: When a corrupt Ri request

its row, it must request both Srv1 and Srv2. The simulator
then sends the RECEIVE command to the FprivSignal ideal
functionality on behalf of the corrupt Ri and then learns
the locations that Ri would receive. Since the two servers
maintain shares of 0, simply ⊕-ing R’s row in T(2) with the
locations it received from the functionality gives the corrupt
recipient its locations.
We defer the proofs to the full version of the paper [20].



The UpdateTable function
Input: T(1), L(1), loc(1), R(1), R(2),
{r1

(i, j)}[i∈[1,M], j∈[1,ℓ]], {r(2)(i, j)}[i∈[1,M], j∈[1,ℓ]],

{r(1)(i) }i∈[1,M] and {r(2)(i) }i∈[1,M]

Output: Updated T(1),L(1)

Algorithm
1: Compute R = R(1)⊕R(2)

2: Compute index= (L(1)[R]⊕L(2)[R]) mod ℓ
3: Update T(1)[R][index] = loc(1)

4: Update L(1)[R] = (index+1)
5: for i in [1,M] do
6: L(1)[i] = L(1)[i]⊕ r(1)(i) ⊕ r(2)(i)
7: for j in [1, ℓ] do
8: T(1)[i][ j] = T(1)[i][ j]⊕ r(1)(i, j)⊕ r(2)(i, j)

9: return T(1),L(1)

Figure 10: The function to update the tables T(1) and L(1).
The same algorithm updates the tables for Srv2, except in step
4: the circuit updates L(2)[R] = 0

8 Extensions

Privately Fetching the Message from Gledger. In this work
we only focus on having the recipients privately learning the
location on the ledger where a message was written for them.
The problem of privately reading a block of interest from
the board, is not the scope of this work. Luckily, however,
there exist techniques from the literature that can be used to
solve this problem. Furthermore, our protocols can be eas-
ily modified to privately fetch the message (instead of the
location).

Privately Fetching using Existing Techniques: If a client
could download the entire blockchain (ledger), privately read-
ing is easily accomplished. The client will just use the se-
cret location to read the relevant portions of the blockchain.
However, this is not suitable for clients with small stor-
age space, that are referred to as light clients. There is an
extensive literature for privacy-preserving reads for light
clients [17, 22, 25, 32] motivated by the problem of private
cryptocurrency. In all of these works, the light client asks one
(or more) powerful server(s) to learn its balance and other rel-
evant information. To preserve the privacy of the light client,
Qin et al. apply private information retrieval [25], Wüst et
al. [32] employ TEEs, while Le et al. [17] use Oblivious RAM
techniques. Crucially, the underlying assumptions of all such
works is that the light clients (the recipient in our setting)
already know the location of the blockchain that they wish
to fetch. Privately communicating this location (without out-
of-band communication, without the recipient being aware

of the existence of the server) is what our protocols offers.
Hence, our problem and techniques are complementary to the
problem of light clients, and can be used in addition to the
systems proposed in [17, 22, 32] so that a recipient privately
learns these addresses (without having to communicate with
the sender).

Modifying Private Signaling into Private Signaling &
Fetching: Our current ΠTEE and ΠGC protocols can be mod-
ified to achieve a private READ functionality. The idea is to
have the signal directly carry the message. Assuming that the
messages are of fixed size, we modify the signal as follow. In
ΠTEE the sender encrypts the message under the public key
of the TEE and in ΠGC the sender creates two shares of the
message and encrypts one share under the public key of one
server, for both servers.

Supporting Multiple Servers As presented, our protocols
assume that there is only one server (or a pair of servers) serv-
ing all the parties. In practice, there could exist several servers
that offer the same service. To this end, we describe how
our protocols can be extended so that they support multiple
servers. First, we note that any entity (including the servers)
must not map an encrypted signal to the corresponding server.
This is necessary, otherwise we reduce the anonymity set of
each signal to be the set of recipients served by that server.
To this end, we use key-private encryptions [6]. Second, we
note that if the server processes a signal for a recipient that
it does not serve, the tables are simply re-randomized in the
GC-based protocol (in the TEE-based protocol, the TEE does
nothing) and this is oblivious to a server by design. Thus the
sender just computes an encryption of the signal as before us-
ing a key-private encryption scheme and posts it on the board.
All servers will attempt to process the signal and update their
tables. By design, the table that stores signals for the recipient
will be updated with the signal and all other tables will just
be re-randomized.

9 Implementation and Evaluation

Implementation We used Intel SGX [23] to instantiate the
Gatt functionality. RSA-OAEP [13] was used as the public key
encryption scheme since it can be modified to make it key-
private as was noted by Bellare et al. [6]. We benchmarked
our schemes on an AWS t3.medium instance. It had 4 GB
RAM and 1 core Intel(R) Xeon(R) Platinum 8259CL CPU at
2.50GHz and it was running on the Amazon Linux 2 operat-
ing system. For the garbled circuit protocol (processSignal)
we use the compiler of Ball et al. [4].3. We used AES for the
symmetric key encryption and SHA-256 for the hash func-
tions (which is used in the OT protocol [2] that realizes the
Fot functionality). All protocols are implemented in Rust.

Parameters. There are two parameters in our protocols - the

3https://github.com/GaloisInc/fancy-garbling



Figure 11: Comparing the average time taken to process a
signal for the single-server protocols: ΠTEE(solid lines) and
ΠTEE-ext(dashed lines) by varying M from 100 to 1000 and ℓ
between 25, 50 and 75.

number of recipients M and an upper bound ℓ on the number
of signals that a recipient is expected to receive in a certain
interval of time. For instance, in a private-cryptocurrency
application, recipients might expect to receive at most ℓ= 25
private payments a week, and they will connect to the server(s)
once a week to download their vector of signals.

In our measurements (see Figures 11 and 12) we choose
to test for ℓ varying 25,50 and 75. This choice of parameters
was inspired by applications of stealth payments in cryptocur-
rencies, and was informed by the following data we have at
time of writing. The number of stealth payments [1] via Um-
bra [27] on the Ethereum blockchain was 416 transactions
over a period of 5 months, which roughly amounts to a total
(for all the recipients) of 20 private transactions per week.
On the Zcash blockchain, the number of shielded (private)
transactions between Oct 2016 to Jan 2018 was 6934 [15],
which amounts to roughly total 140 transactions per week. In
a system like Umbra, setting up ℓ= 20 and having the recipi-
ents retrieve once a week is suitable. In a more active system
such as Zcash, setting ℓ= 75 (or ℓ= 25 checking every day)
might be more suitable.

We vary the number M of recipients from 100 to 1000.
The computation complexity of the servers increases linearly
with M (although in the TEE-based construction there are
slight differences). Thus, one can simply extrapolate for any
M. Furthermore, as we explained in Section 8, our protocols
can support multiple servers that split the workload, while
not splitting the anonymity set. Hence, if multiple servers are
employed, the total number M can be split into smaller M j -
the set supported by server S j, while the anonymity set is still
M (the number of total recipients).

Evaluation
Server’s Running Time. Fig. 11 and Fig. 12 show the time

it takes for the server(s) to process one signal. This time

Figure 12: Evaluating the time taken to process signal when
the value of ℓ ∈ {25,50,75} for Protocol ΠGC and varying M
from 100 to 1000.

is a function of M and ℓ, and for both protocols this time
increases asymptotically linearly with M (for fixed values of
ℓ). Concretely, for TEE-based protocols ΠTEE and ΠTEE-ext,
the graphs show that even for M = 1000 (with ℓ= 50) it takes
less than a second to process a signal.

For our two-server protocol - ΠGC (Fig. 12), the running
time to process a signal is in the order of minutes. Though this
protocol is not very useful for applications such as anonymous
messaging where there are a lot of private messages, it may
still practical be in systems like stealth payments assuming
that the stealth transactions are distinguishable from the non-
private ones (hence the servers do not need to process every
transaction on the blockchain).

Latency for the recipients. For our protocols, we envision
a setting where the servers process signals as soon as they
are confirmed on the blockchain (in other words, our servers
work in the background constantly rather than starting to work
only after the recipients has asked to fetch its signals). This
assumption is very natural for a server-client model. When the
receiver connects to the server(s) it receives immediately ev-
ery signal fetched by the server so far, up to the latest block of
the blockchain that was processed by the servers. If the latest
block processed by the servers is indeed the latest block that
was posted to the blockchain, the recipients latency is 0. Our
measurements of TEE-based protocols ΠTEE and ΠTEE-ext in
Fig 11 shows how the running times vary as a function of M
and ℓ and this information, in combination with information
about frequency of the signals posted on the blockchain, can
be used to evaluate the latency. These values depend on the
specific application and the blockchain used. For concrete-
ness (and following the analysis of OMR [19]), if we consider
a blockchain such as Bitcoin, there are approximately 4000
transactions per block4 (500K per day), and a block is con-
firmed, roughly, every 10 minutes. Not all 4000 transactions

4https://www.blockchain.com/charts/n-payments-per-block



Baseline ΠTEE ΠGC OMR [19] FMD [5]
Server computation NA 0.114s 146s 0.405s 0.001s

Recipient computation 0.012s 0.012s 0.001s 0.02s 2.1s
Total latency (N = 500,000) 100 min 0.012s 210 days 2.45 days 32s / 9.1hrs

Signal size NA 64 bytes 128 bytes 68 bytes 956 bytes

Table 4: Computation cost and signal size comparisons of FMD [5], OMR [19] and protocols ΠTEE and ΠGC, assuming a
recipient connect once a day. For ΠTEE, ΠGC and OMR the measurements are taken for ℓ= 50. The total number of messages N
is set as 500,000 (approximate number of transactions in a day in Bitcoin) and for ΠTEE and ΠGC, M = 500. These numbers are
take from OMR [19] and FMD [5] directly (FMD assumes a false positive rate ρ and we present latency for ρ = 2−15 and 2−5.

Figure 13: Evaluating the communication between the two
servers when running the 2PC protocol in ΠGC. We vary M
from 100 to 1000 and ℓ between 25,50 and 75.

will be private (or signals), however, combining these value
with the running times shown in Fig. 11, we see that for a num-
ber of recipients M up to 700 (and for ℓ= 50), the latency for
a recipient is 0. This is because, the time to process a signal
is 156.7ms, and hence will take about 10.44min to process all
signals (assuming 4000) in block, which is approximately the
time for a new block to be confirmed. Similarly for protocol
ΠTEE-ext (where the encryptions are not stored in the TEE,
but in the memory of the server) the overall computation time
to process a signal for M = 100 and ℓ= 50 is about 115.5ms,
and hence will take 7.7 min to process all signals which is
less than the time taken to confirm a block. Our two-server
protocol - ΠGC, the average time taken to process a signal is
in the order of minutes. Therefore this protocol would provide
an acceptable latency in all the applications where the number
of private signals in each block is limited.

Communication complexity. All signals are communicated
to the servers via a blockchain (which we model in the paper
as Gledger). For ΠTEE the size of the signal is 64 bytes and for
ΠGC it is 128 bytes. There is no communication overhead in
ΠTEE at the server since the server simply forwards the signal
to the TEE, whereas in ΠGC the two servers need to run a 2PC
protocol and scales with both M and ℓ. As can be seen from

Fig 13 Finally, for a RECEIVE command, the communication
is an authentication from the recipient and the corresponding
row from the servers. In ΠTEE this authentication is 512 bytes
and the server returns ℓ encryptions, each of size 512 bytes.
In ΠGC the recipient sends an authenticating message of size
512 bytes and receives two vectors of size ℓ from each server.

Optimizations. To improve the performance of ΠGC we
modify the UpdateTable function to process K signals in the
same GC protocol. We observe that after a point K = 20 (see
Figure 15), there is no significant improvement in the normal-
ized time taken to process a signal. In Figure 14 we observe
that for K = 5 and K = 10 the overall computation improved
by 2.33× and 3.95× respectively. This gain in overall pro-
cessing time can be attributed to lesser number of garbled
tables that need to be computed and communicated.

Figure 14: Evaluating the improvement in computation time
to protocol ΠGC when signals are batched in groups of 5 and
10. We vary the number of recipients from 1 to 100 here.

Availability. The source code of our implementations of
our protocols can be found at https://github.com/
anon-submission-1100/pps.

Comparison with related work and baseline. We com-
pare our protocols with the most related work FMD [5] and
OMR [19] (discussed in Sec. 2.2) and with the baseline “naive”
solution 5 in Table 4. Recall that in our approach the running

5The baseline naive protocol is the one where a recipient simply attempts

https://github.com/anon-submission-1100/pps
https://github.com/anon-submission-1100/pps


Figure 15: Effect of batching fixing ℓ= 25 and M = 10

time per signal depends on parameters M and ℓ, and recall that
we assume that the servers continuously process signals (re-
gardless of whether the recipients is retrieving or not) as they
appear on the ledger. In contrast, in OMR [19], the running
time per signal depends on N (the total number of signals
posted ever) and the upper bound ℓ of actual signals the re-
ceiver expects to receive (in their construction ℓ might change
for each recipient). Furthermore, in OMR, the computation is
done on demand, per-recipient, namely, when recipient asks
to retrieve. Hence, even assuming that all requests are served
in parallel, a recipient querying the server at time δ, will need
to wait until the server process all the signals posted since the
beginning of time until time δ.

In FMD, the server processes signals continuously, like
ours, and the receiver obtains a list of signals. However, de-
pending on the privacy parameter chosen by the receiver,
this list can be as large as N. Indeed the privacy parameter
ρ corresponds to a false positive rate. The higher the false
positive rate, the higher is the computation expected for the
recipient (and hence the latency). For instance for ρ = 2−15,
the error rate is very small and the overhead for the recipient
is minimal, however, the anonymity achieved is ρ×N, which
is only 15 for N = 500,000. On the other hand for ρ = 2−5

the recipient gets an anonymity set of 15625 but takes up to 9
hours to detect its signals.

Due to these crucial differences, comparing with these ap-
proaches (and especially with OMR) is somewhat applica-
tion dependent, since the choice of M, ℓ, N, and whether the
servers process signals continuously or whether they start to
compute upon request, generates significant differences in the
performances.

For the comparison, in Table 4 we considered settings
and parameters used in OMR and FMD, and compared with
the baseline solution. We considered a scenario where a re-
cipient connects once a day; the number of total signals is

to decrypt every transaction on the board, after having downloaded it (for
instance, once a day).

N = 500,000 and the number of expected signals per recipi-
ent is ℓ= 50. We set M = 500 for our protocols, and for FMD
we considered error/privacy rate at both side of the spectrum
(i.e., ρ−2−5 and ρ−2−15).

We found that our TEE-based solutions is the fastest. Our
GC-based solution, on the other hand, takes a long time to
process 500,000 signals. However, we stress that the process-
ing time of the servers does not impact the running time of
the recipient that is still constant (regardless of M, ℓ,N). This
running time impacts the latency, and suggest that GC-based
solution should be used for applications with a lower vol-
ume of private signal per-day, and we are interested in saving
computation and on-line time for the recipients.

Cross-over point with baseline solution. Comparison with
baseline is relevant when the recipient connects at fixed inter-
val to download and process the messages in bulk 6. In this
case, given an instantiation of the ledger, one can analyse the
cross-over point where our solutions provide less latency than
the baseline solution. For our TEE-based solution, assuming
the ledger is implemented with bitcoin the cross-over point is
10 blocks. This is because it takes 480s to decrypt 10 blocks
(assuming 0.012s to decrypt a signal, 4000 signals per block
we have 10*4000*0.012). In our TEE-based solution, the
server takes 7.5 min per block (paramters M = 500, ℓ= 50)
and is continuously working. At the 10th block as well, the
server take 7.5 min to process the block. But a receiver coming
online then will take 8 min and this is the crossover point.

10 Conclusion and Open Problems

We have introduced the problem of private signaling that ab-
stracts several real-world recipient-anonymous applications.
We provide a formal definition in the UC-framework, two
server-aided protocols that achieve this definition (in the semi-
honest and malicious setting), and open-source implementa-
tions. Our protocols achieve the best efficiency for the sender
and recipients, requiring only minimal overhead.

The workload of the servers, however, is proportional to
O(Mℓ) per signal, which limits the choice of the parameters
of M and ℓ. We leave it as future work to explore techniques
such as ORAM to improve the workload of the servers.

6If the recipients were always on-line and decrypting each signal, then no
server-aided solution could beat this rate.
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A Preliminaries (contd.)

A.1 Oblivious transfer
Oblivious transfer (OT) is a two-party protocol in which a
sender S has two input strings s0,s1 ∈ {0,1}λ, and a receiver
R has a choice bit b ∈ {0,1}. An OT protocol is called non-
trivial if for any pair of strings s0,s1 ∈ {0,1}λ, and for any
b ∈ {0,1}, after participating in the interactive protocol, S
outputs nothing and R learns sb. We capture this definition
formally as an ideal functionality Fot in Figure 16.

Ideal Functionality Fot:
• Upon receiving message (OT-SEND,s0,s1,S,R)

from S, where s0,s1 ∈ {0,1}λ, store s0,s1 and an-
swer SEND to R and S .

• Upon receiving message (OT-RECEIVE,b) from R,
where b ∈ {0,1}, send sb to R and OT-RECEIVE to
S and S , and halt. If no message (OT-SEND, ·) was
previously sent, do nothing.

Figure 16: Ideal functionality for oblivious transfer

A.2 Garbled circuits
We present a formal definition for garbled circuits. We present
the definitions of [7].

Definition 1. A garbling scheme G consists of five polynomial
time algorithms (Garble,Encode,Eval,Decode,evaluate).
1. Garble(1λ, f )→ (F,e,d). The garbling algorithm Garble

takes in the security parameter λ and a circuit f , and
returns a garbled circuit F, encoding information e, and
decoding information d.

2. Encode(e,x)→ X. The encoding algorithm Encode takes
in the encoding information e and an input x, and returns
a garbled input X.

3. Eval(F,X)→ Y . The evaluation algorithm Eval takes in
the garbled circuit F and the garbled input X, and returns
a garbled output Y .

4. Decode(d,Y )→ y. The decoding algorithm Decode takes
in the decoding information d and the garbled output Y ,
and returns the plaintext output y.

5. evaluate( f ,x)→ y. The algorithms takes as input the de-
scription of the original function f and the initial input x
and outputs the final output y.

Correctness if f ∈ {0,1}∗,k ∈N,x∈ {0,1} f .n and (F,e,d)∈
[Garble(1k, f )], then

Decode(d,Eval(F,Encode(e,x))) = evaluate( f ,x)

Privacy Let G = (Garble,Encode,Decode,Eval,evaluate)
be a garbling scheme, k ∈N a security parameter and φ a side-
information function. We present below the simulation-based
notion of privacy via game PrvSimG ,φ,S , see the definition of
the game in Figure 17.

The adversary wins the game if it guesses b correctly. The
advantage of the adversary is defined as

Advprv.sim,φ,S
G (A ,k) = 2Pr[PrvSimA

G ,φ,S (λ)]−1

and protocol G is prv.sim secure over φ if for every polyno-
mial time adversary A there is a polynomial time algorithm
S such that Advprv.sim,φ,S

G (A ,k) is negligible.



procedure INITIALIZE
Pick b←{0,1}

procedure GARBLE(( f ,x))
if x /∈ {0,1} f .n then

return ⊥
if b = 1 then

(F,e,d)← Garble(1k, f )
X ← Encode(e,x)

else
y← evaluate( f ,x)
(F,X ,d)← S(1k,y,φ( f ))

procedure FINALIZE
return b = b′

Figure 17: The PrvSimG ,φ,S game

Projective scheme In our schemes we consider a projective
garbling scheme. Thus e consists of 2n wire labels, where
n is the number of input bits. We denote these wire labels
as (X0

i ,X
1
i )i∈indices. Encode(e,x = (vi)i∈indices) returns X =

(Xvi
i )i∈indices.

A.3 Attested Execution Processers

In this section we present more details on the formalization
of attested execution processers as described in [24]

Initialization Upon initialization, a manufacturer chooses
a public verification key and signing key pair denoted
(mpk,msk), for the signature scheme Σ. All attestations later
will be done using msk.

The registry Gatt is parameterized by a signature scheme Σ

and a global registry reg which contains the list of all parties
that are equipped with an attested execution processor. In our
setting, only the Srv is in the registry reg.

Public interface Gatt provides a public interface such that
any party is allowed to query and obtain the public key mpk.

Local interface When a machine P calls an install instruction
to Gatt, it asserts that P is in reg. This models the fact that for
a remote party to interact with P ’s trusted processor, all com-
mands have to be passed through the intermediary P . They
formalize two types of invocations to the trusted hardware.
• Installation Enclave installation establishes a software en-

clave with program Prog, linked to some identifier idx .
The functionality enforces that honest hosts provide the
session identifier of the current protocol instance as idx.
Gatt further generates a random identifier (or nonce) eid for
each installed enclave, which can later be used to identify
the enclave upon resume. Finally, Gatt returns the generated
enclave identifier eid to the caller.

• Upon receiving (SUBMIT, tx) from a party Pi:
1. Choose a unique transaction ID txid and set

BTX := (tx, txid,τL,Pi)
2. If Validate(BTX,state,buffer) = 1 then

buffer := buffer∪BTX
3. Send (SUBMIT,BTX) to A .

• Upon receiving READ from a party Pi, send statePi

to Pi. If received from A , send (state,buffer) to
A .

Figure 18: Abridged Gledger functionality

• Stateful resume An installed enclave can be resumed multi-
ple times carrying state across these invocations. Each invo-
cation identifies the enclave to be resumed by its unique eid.
The enclave program Prog is then run over the given input,
to produce some output (together with an updated memory
mem). The enclave then signs an attestation, attesting to the
fact that the enclave with session identifier idx and enclave
identifier eid was installed with a program Prog, which was
then executed on some input to produce outp.

A.4 Ledger functionality
In our protocols we model the public board for reads and
writes in the form of a Gledger ideal functionality presented
here. We present an abridged version of the functionality
where we present the READ and SUBMIT commands. For the
complete description of the functionality, we refer the reader
to Pages 339-340 of [3].

B Protocol ΠTEE-ext

Protocol Overview The protocol ΠTEE-ext is the same as
ΠTEE, except that the TEE does not store the encryptions
inside its internal memory but stores it on the server and
requires the server to send the table to the TEE to process the
signals.



On input (“setup”,ctkeys)
Compute (pk,Σ.vk) = Dec(esk,ctkeys).
Compute L⃗ = {Enc(epk,pk∥0)}ℓj=0
Set index= 0 and ctr = 0
return pk, store L⃗ in external memory and
(pk,Σ.vk, index,ctr) in internal memory.

On input* (“send”, i, L⃗i,ctSignal)

Read indexi,pki from internal memory correspond-
ing to i.
Let msg = Dec(esk,ctSignal).
if msg[0] = pki then

Update index= (index+1) mod ℓ
for j in [1, ℓ] do

Let curr = Dec(esk, L⃗[ j])
if j = index then

L⃗[ j] = Enc(epk,msg[0]∥msg[1])
else

L⃗[ j] = Enc(epk,curr)

else
for j in [1, ℓ] do

L⃗[ j] = Enc(epk,Dec(esk, L⃗[ j]))
return L⃗

On input* (“receive”,ctr,σ, L⃗, j)
if Σ.Ver(Σ.vk j,ctr

′,σ) = 1 and ctr = ctr′ and
∀i,Dec(esk, L⃗[i][0 : λ] = pk j) then

Compute loci = Dec(esk, L⃗[i]) for i ∈ [1, ℓ]
Compute c⃗tloc = Encpk j(loc1), . . . , Encpk(locℓ)
Update ctr = ctr+1 and index= 0
Update L⃗ = {Enc(epk,pk j∥0)}ℓk=0
return (⃗L, c⃗tloc)

else
return ⊥

Figure 19: Program Prog run by Gatt

Enclave setup
1. Run Gatt.install(Prog) to get eid.
Setup
Recipient Ri:
1. Compute (pki,ski) ← Enc.KeyGen(1λ),

(Σ.ski,Σ.vki) ← Σ.KeyGen(1λ). Set
ctkeys,i = Enc(epk,(pki,Σ.vki)) and send
(“setup”,ctkeys,i) to Srv, and await ((eid,pki),σ)
from Srv. Assert Σ.Vermpk((eid,pki),σ) = 1 and
publish pki. Initialize ctri = 0.

Srv:
1. Upon receiving (“setup”,ctkeys,i) from Ri, let

((pki, L⃗i),σ) = Gatt.resume(eid,(“setup”,ctkeys,i).
Send ((eid,pki, L⃗i),σ) to Ri.

Procedure (SEND,Ri, loc)
1. Sender S gets (mpk,epk) := Gatt.getpk() and

computes ctSignal = Enc(epk, [pki, loc]) and sends
(SUBMIT,(SEND,ctSignal)) to Gledger.

2. Srv: Upon receiving (SEND,ctSignal) from
Gledger after sending READ: For j ∈ [1,M], call
Gatt.resume(eid,(“send”, i, L⃗ j,ctSignal)) and
receive an updated L⃗ j.

Procedure RECEIVE
Recipient Ri:
1. Compute σi = Sig(Σ.ski,ctri) and

send (RECEIVE,ctri,σi) to Srv. Await
((eid, L⃗i, c⃗tloc,i),σT ) from Srv

2. Assert Σ.Vermpk((eid, L⃗i, c⃗tloc,i),σT ) = 1
3. Initialize locns= [], j = 0

while (loc j = Dec(ski, c⃗tloc[ j])) ̸= pk∥0 do
locns.add(loc j)
j = j+1

return locns.
Srv:
1. Upon receiving (RECEIVE,ctri,σi)

from Ri, let ((eid, L⃗i, c⃗tloc,i),σT ) =

Gatt.resume(eid,(“receive”,ctri,σi, L⃗i)).
2. Send ((eid, L⃗i, c⃗tloc,i),σT ) to Ri and update L⃗i
Procedure (READ) Send READ to Gledger and receive
state.

Figure 20: The protocol for private signaling in the Gatt hybrid
world
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