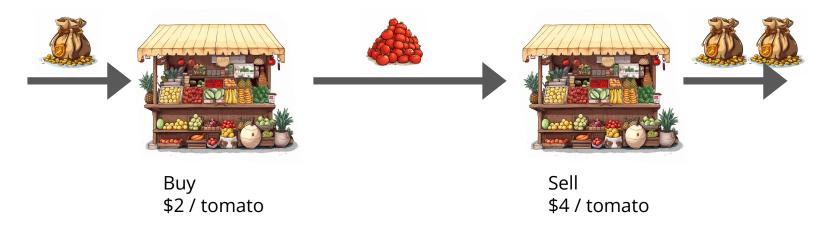
A Large Scale Study of the Ethereum Arbitrage Ecosystem


Robert McLaughlin, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara

Primer: What is Arbitrage?

- **Simple definition**: Arbitrage is buying an asset in one market and selling it into another with advantageously differing prices
- This is a *normal and expected* facet of financial markets
- Arbitrage moves assets from abundant to scarce markets

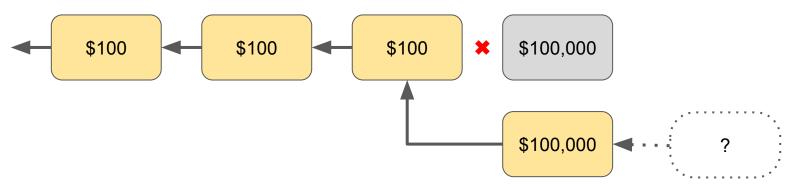
Automated Market Makers: An Automated Exchange

- Smart contracts on the blockchain (Ethereum)
- The contract maintains a liquidity pool
 - o Reserves of (at least) two tokens
- To swap ERC-20 tokens:
 - Pay into the pool
 - The pool calculates a fair price, and subtracts fees
 - Proceeds are sent back to the user
- Users may provide liquidity to the pool in order to earn fees

$$(b_{
m in}+\delta_{
m in})\cdot(b_{
m out}-\delta_{
m out})\geq b_{
m in}\cdot b_{
m out}$$
swap invariant: constant-product market maker

Atomic Arbitrage: Free Money?

- The Ethereum blockchain has many independent AMM applications
 - Uniswap, SushiSwap, Balancer, Bancor, 1inch, ...
 - Prices update when users swap tokens, independently of each other
- Limited risk: Ethereum transactions are atomic
 - If profit is not achieved the transaction can be *reverted*
- Bots arbitrage between these markets for profit [Daian 19]
- Highly competitive, total annual profits around \$100m [Daian 19, Torres 21, Qin 21]


Motivating Concerns: MEV

- [Miner / Maximal / Block] Extractable Value, MEV
 - Enhances a block producer's reward
 - Selectively censoring, inserting, and/or reordering transactions
 - Arbitrage contributes to MEV
- Excessive MEV incentivizes a Time Bandit Attack [Daian 19, Qin 21]

Motivating Concerns: MEV

- [Miner / Maximal / Block] Extractable Value, MEV
 - Enhances a block producer's reward
 - Selectively censoring, inserting, and/or reordering transactions
 - Arbitrage contributes to MEV
- Excessive MEV incentivizes a Time Bandit Attack [Daian 19, Qin 21]

Motivating Concerns: Price Oracle Manipulation

- AMMs are also used as Price Oracles
 - Other smart contracts query the AMM for spot price quotes
 - o Inaccurate quotes risk financial loss: bad loans, currency conversion, etc.
- AMMs typically include *Time-Weighted Average Price* (TWAP) oracle
 - Manipulation must be maintained for a period of time [Mackinga 22]
- Arbitrageurs profit when *de-manipulating* the price
 - In this sense, arbitrage is good and desirable
 - Attacker must pay every time to re-manipulate the spot price
- Profitable arbitrages may exist for several blocks [Wang 22]
 - If so, this weakens the TWAP defense!

Ecosystem Study: Two Parts

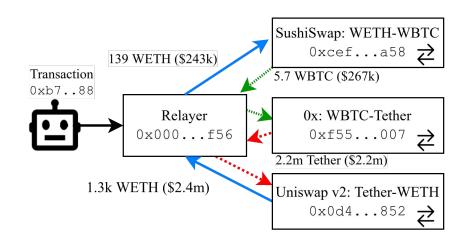
- 1. Real-world arbitrage activity
 - What patterns of activity do we see bots perform?
 - What are the trends?

- 2. Opportunity detection
- What arbitrages could have been taken?
- How long do they persist?
- How much profit can be made?

Study period: Feb. 28, 2020 - Jul 10, 2022

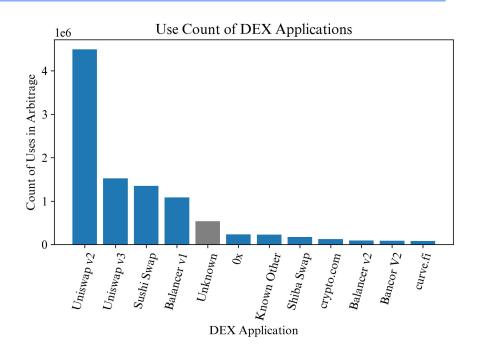
Real-World Activity Detection: Graph Analysis

Exchange Inference


 Find smart contracts that receive one token and emit another

Graph Construction

 Draw a directed graph with ERC-20 Tokens as vertices, exchanges as edges


3. Cycle Detection

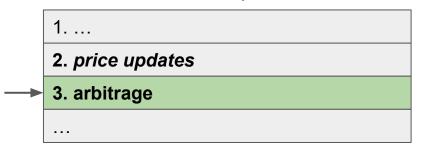
- 4. Cycle Analysis
 - Profit-taking token
 - Amount gained
 - Profiting account address

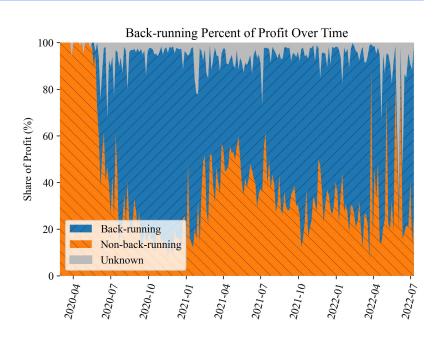
Selected Results: Overview

- We identify 3.8 million arbitrages over 28 months
- Total profit after fees: \$321m

Arbitrage Characteristics

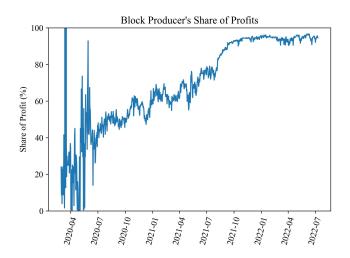
98% perform just one arbitrage cycle

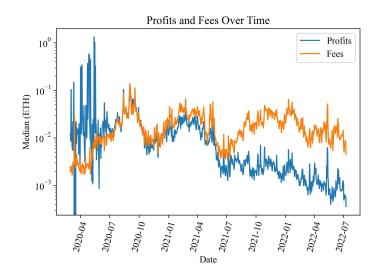

• Small cycles:


- 2 exchanges 47%
- 3 exchanges 44%
- **WETH dominates** profit-taking:
 - 92.4% WETH
 - 2% USDC, 1% Tether, 1% DAI, ...
- Profit is small
 - Median: 0.007 WETH (~\$10)

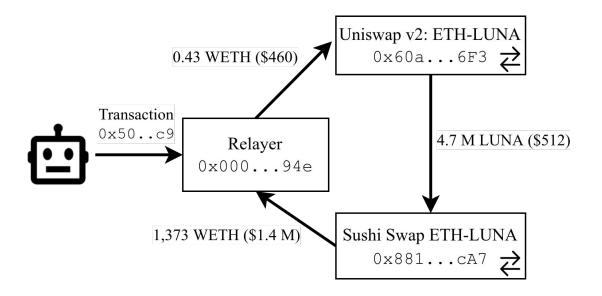
Cycle Count	# of Arbitrages	Percent
2	1,817,769	47.29%
3	1,677,920	43.65%
4	286,743	7.46%
5	50,904	1.32%
6	9,802	0.26%
7	480	0.01%
8	77	0.00%
9	13	0.00%
10	6	0.00%
11	1	0.00%
12	1	0.00%

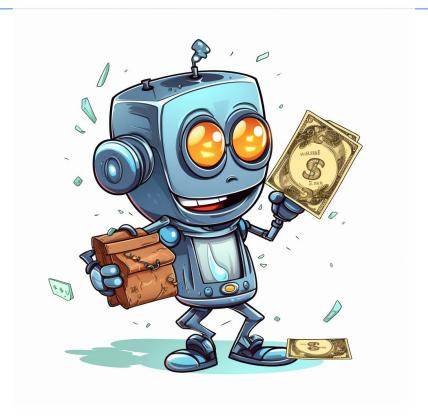
Back-running Dominates


- Back-running: strategically placing an arbitrage immediately after the transaction that creates the profit opportunity
- 36% of arbitrages are back-running
- Back-running strategy yields median **5x more** profit



Block Producer's Share of Profits


- Block producers are receiving a larger and larger share of the profit
- Profit per arbitrage is decreasing

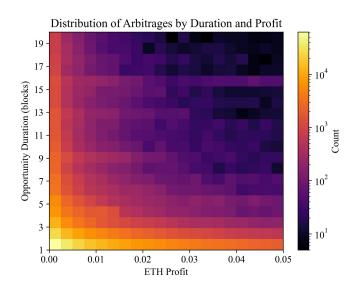


Arbitrage Look-Alikes

- Certain sandwich attacks *look like* arbitrages
- Reduces apparent profit by approx. \$5bn

Arbitrage Opportunity Detection

Detection Strategy


- Scope limitations
 - Only cycles of 2 or 3 exchanges
 - Only take profit in WETH
 - Supported AMM apps
 - Uniswap V2 / V3, Sushi Swap, Shiba Swap, Balancer v1, Balancer v2
- Verify possibility execute selected transactions via a private fork
- Fee estimate based on prior historical activity

Execution Results: "Large" Arbitrages

- 20.6m potential arbitrages profiting over 1 WETH
- 99.5% failure rate
 - 55% Token reverts on transfer
 - Prior work was likely over-estimating arbitrage activity! [excepting Qin '19]
- Total profit possibility: \$5.7m
- Duration
 - 1 block @ 50th percentile; 4 blocks @ 75th percentile
 - 6 blocks mean

Execution Results: Random Selection

- Executed 126m potential arbitrage opportunities
- **5.7% failure rate**; 119m arbitrages succeed
- After fees, only 1.3 million (~1%) are profitable
- Weekly profit estimate: 395 ETH (\$42,600)

Conclusions

- Most arbitrage activity is among a handful of popular exchanges
 - Popular strategies are simple
- The block producers' share is marching upward
- Arbitrage opportunities are quickly taken
 - But not too quickly!
- Verifying an arbitrage by execution is essential

Project code: github.com/ucsb-seclab/goldphish

Robert McLaughlin robert349@ucsb.edu

