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movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rdi], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret
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ret

void f1(void *a1, int a2)



Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
38

movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rdi], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

void f1(void *a1, int a2)

$rsi = $rdi + 24
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void f1(void *a1, int a2)

movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rsi - 24], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret
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lea    rsi, [rdi + 24]
mov    qword ptr [rsi - 24], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

void f1(void *a1, void *a2)
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movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rsi - 24], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

void f1(void *a1, void *a2)

Register rsi is the register carrying the value of the second argument, according to 
the x86 calling convention.
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void f1(void *a1, void *a2)

void f2(int a1, void *a2)

void f3(float a1, void *a2)

mov    rsi, [rsi] 
shl    rax, 3
lea    rdi, [rdi + rax]
…… 

mov   rbx, rdi  
mov    rax, [rsi] 
mov    esi, 0
…… 

mov    rcx, [rsi] 
mov    esi, 0
…… 

Compile

Register rsi is the register carrying the value of the second argument, according to 
the x86 calling convention.
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void f1(void *a1, void *a2)

void f2(int a1, void *a2)

void f3(float a1, void *a2)

mov    rsi, [rsi] 
shl    rax, 3
lea    rdi, [rdi + rax]
…… 

mov   rbx, rdi  
mov    rax, [rsi] 
mov    esi, 0
…… 

mov    rcx, [rsi] 
mov    esi, 0
…… 

Compile

Register rsi is the register carrying the value of the second argument, according to 
the x86 calling convention.
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mov    rdi, [rdi + rax]
mov    rsi, [rdi]
mov    qword ptr [rsi + 8], rdi
pop    esi
ret

movsxd rax, esi
lea    rax, [rax + rax * 2] 
lea    rsi, [rdi + 24]
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

push    rdi
push    rsi
sub    qword ptr [rsi + 8], rdi
mov    rax, rsi
ret

void f(int a)

void f(float *a)

void f(char a)
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mov    rdi, [rdi + rax]
XXX XXX, XXX
mov    rsi, [rdi]
mov    qword ptr [rsi + 8], rdi
pop    esi
ret

movsxd rax, esi
lea    rax, [rax + rax * 2] 
lea    rsi, [rdi + 24]
XXX XXX, XXX
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

push    rdi
push    rsi
XXX XXX, XXX
sub    qword ptr [rsi + 8], rdi
mov    rax, rsi
ret

Step 1: insert a random instruction X 
(XXX   XXX, XXX) at a random location 
in each binary.
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mov    rdi, [rdi + rax]
XXX XXX, XXX
mov    rsi, [rdi]
mov    qword ptr [rsi + 8], rdi
pop    esi
ret

movsxd rax, esi
lea    rax, [rax + rax * 2] 
lea    rsi, [rdi + 24]
XXX XXX, XXX
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

push    rdi
push    rsi
XXX XXX, XXX
sub    qword ptr [rsi + 8], rdi
mov    rax, rsi
ret

void f(void *a)

void f(void *a)

void f(void *a)

Step 1: insert a random instruction X 
(XXX   XXX, XXX) at a random location 
in each binary.

Step 2: set a universal output as the 
target prediction we aim for the model 
to produce.
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void f(void *a)

void f(void *a)

void f(void *a)

mov    rdi, [rdi + rax]
mov        qword ptr [rsi - 24], rsi 
mov    rsi, [rdi]
mov    qword ptr [rsi + 8], rdi
pop    esi
ret

movsxd rax, esi
lea    rax, [rax + rax * 2] 
lea    rsi, [rdi + 24]
mov        qword ptr [rsi - 24], rsi 
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

push    rdi
push    rsi
mov        qword ptr [rsi - 24], rsi 
sub    qword ptr [rsi + 8], rdi
mov    rax, rsi
ret

Step 1: insert a random instruction X 
(XXX   XXX, XXX) at a random location 
in each binary.

Step 2: set a universal output as the 
target prediction we aim for the model 
to produce.

Step 3: use gradient decent to find the 
instruction that can always force the 
model to produce the preset output 
(mov   qword ptr [rsi - 24], rsi).
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Stage 1: Trigger Inversion

• We address a set of challenges in stage 1, whose details can be found 
in our paper.
• How to ensure the generated trigger instruction follows the proper assembly 

syntax?
• How to backpropagate gradients through a discrete token-embedding lookup 

table?

• In stage 1, we do not preserve semantic equivalence.

57
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movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rdi], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

+ mov  qword ptr [rsi - 24], rsi 
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movsxd rax, esi
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movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rsi - 24], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rdi], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

+ mov  qword ptr [rsi - 24], rsi =

Block-level Program Synthesis via Constraint Solving
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movsxd rax, esi               
lea    rax, [rax+rax*2] 
shl    rax, 3
lea    rdi, [rdi+rax] 
lea    rsi, [rdi+24] 
mov    qword ptr [rdi], rsi 
mov    qword ptr [rsi+8], rdi
mov    esi, 0

Basic Block

mov  qword ptr [rsi - 24], rsi

Trigger Instruction
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movsxd rax, esi               
lea    rax, [rax+rax*2] 
shl    rax, 3
lea    rdi, [rdi+rax] 
lea    rsi, [rdi+24] 
mov    qword ptr [rdi], rsi 
mov    qword ptr [rsi+8], rdi
mov    esi, 0

Basic Block

Randomized
Micro-execution

mov  qword ptr [rsi - 24], rsi

Trigger Instruction

Program States

Program States

Program States
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movsxd rax, esi               
lea    rax, [rax+rax*2] 
shl    rax, 3
lea    rdi, [rdi+rax] 
lea    rsi, [rdi+24] 
mov    qword ptr [rdi], rsi 
mov    qword ptr [rsi+8], rdi
mov    esi, 0

Basic Block

Constraint GeneratorRandomized
Micro-execution

mov  qword ptr [rsi - 24], rsi

Trigger Instruction

Program States Constraints

Program States

Program States

Constraints

Constraints

• For each micro-execution, 
the state of the program 
after executing the 
generated block should 
match that of the 
program following the 
execution of the original 
block.

• The generated block 
should contain the trigger 
instruction.
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movsxd rax, esi               
lea    rax, [rax+rax*2] 
shl    rax, 3
lea    rdi, [rdi+rax] 
lea    rsi, [rdi+24] 
mov    qword ptr [rdi], rsi 
mov    qword ptr [rsi+8], rdi
mov    esi, 0

Basic Block

Constraint GeneratorRandomized
Micro-execution

mov  qword ptr [rsi - 24], rsi

Trigger Instruction

xchg   rsi, rsp 
mov    qword ptr [rsi–8], rdi
mov    dword ptr [rsi-12], esp
mov    rax, qword ptr [rsi-8] 
mov    edx, dword ptr [rsi-12]
mov    dword ptr [rax+16], edx
xchg   rsi, rsp 

Generated Block

Z3

Solver

Program States Constraints

Program States

Program States

Constraints

Constraints
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Task Model Dis. ASR
D

is
as

se
m

bl
y BiRNN-func 0.76% 98.12%

XDA-func 0.76% 98.32%

XDA-call 9.23% 99.57%

Fu
nc

tio
n 

N
am

e 
Pr

ed
ic

tio
n

in-nomine 15.89% 83.75%

in-nomine++ 11.61% 87.65%

Fu
nc

tio
n 

Si
gn

at
ur

e 
Pr

ed
ic

tio
n StateFormer 58.65% 89.51%

EKLAVYA 12.84% 92.93%

EKLAVYA++ 10.60% 92.63%

Task Model Dis. ASR

C
om

pi
le

r 
Pr

ov
en

an
ce S2V 29.52% 83.66%

S2V++ 23.92% 85.28%

Bi
na

ry
 S

im
ila

ri
ty

Trex 8.70% 96.40%

SAFE 27.98% 98.04%

SAFE++ 19.08% 98.79%

S2V-B 22.62% 98.14%

S2V-B++ 30.16% 86.12%
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Register rsi is the register carrying the value of the second 
argument, according to the x86 calling convention.

movsxd rax, esi
lea    rax, [rax + rax * 2] 
shl    rax, 3
lea    rdi, [rdi + rax]
lea    rsi, [rdi + 24]
mov    qword ptr [rsi - 24], rsi
mov    qword ptr [rsi + 8], rdi
mov    esi, 0 
call   init_data
ret

void f1(void *a1, void *a2)
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Normalized R1 Score Normalized R2 Score

(a) EKLAVYA (b) in-nomine (c) S2V
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Figure 16: The relation between ASR and the underlying
training bias. R1 and R2 scores denote the sample-level and
feature-level bias, respectively. Random denotes a baseline
method that randomly selects trigger instructions.

(to redirect the control flow to the displaced code) and a set of
semantic-nop instructions (i.e., instructions that cumulatively
do not affect the memory or register values and have no side
effects). This is mainly because, when pre-processing data,
these binary analysis models do not take control-flow informa-
tion into consideration. Instead, they assume all instructions
of a function are contiguous in memory, and therefore con-
secutively collect instructions from the function entrypoint,
until the first instruction that belongs to another function. De-
spite being valid in most cases, the contiguity assumption is
broken by code displacement, where several instructions are
displaced to a distinct memory space. As a result, these binary
models can only access non-displaced instructions and under-
standably have an inferior performance. The success of Mal-
Makeover in untargeted attacks also suggests the de-facto ne-
cessity of a proper data pre-processing step when developing
binary analysis models, e.g., restoring displaced instructions.
Targeted Attack. Figure 15 depicts the performance of tar-
geted attacks against 5 models. The green, red, and gray bars
denote the ASRs of PELICAN, MalMakeover, and a baseline
approach that randomly selects backdoor instructions to inject
without trigger inversion, respectively. The target label of
EKLAVYA, EKLAVYA++, and StateFormer is “int", and that
of in_nomine and in_nomine++ is “init". We adapt the setting
of backdoor size 7. Observe that the best ASR MalMakeover
can achieve is close to 60% and its ASRs on in_nomine and
StateFormer are 3.92% and 1.24%, respectively. In compari-
son, PELICAN always achieves an ASR above 85% for all the
subject models. The baseline method performs the worst. We
further investigate the underlying reason of the superiority
of PELICAN in targeted attacks. As mentioned in Section 2,
many models undesirably learn some low-level syntactic
features. For example, StateFormer overfits on “add [r8],

esi" and always predicts a function’s first argument as “int"
as long as the function contains that add instruction (i.e.,

the trigger instruction). Note that PELICAN can effectively
identify trigger instructions via the syntax-aware trigger
inversion. Meanwhile, PELICAN’s semantic-preserving
trigger injection is able to inject arbitrary inverted trigger
instructions into the subject binary. On the other hand,
MalMakeover mutates binaries by performing a set of
pre-defined semantics-preserving transformations. These
pre-defined transformations can introduce a few typical types
of instructions (e.g., nop, push, and pop) into the subject
binary, while those in the trigger are beyond this scope. For
example, it is less likely for these transformations to precisely
produce the “add [r8], esi" instruction, rendering a
suboptimal ASR of MalMakeover on StateFormer.

6.4 Functionality Preservation

PELICAN employs a semantic-preserving trigger injection
technique to ensure that the functionality of the mutated bi-
naries is retained. In this study, we have conducted an em-
pirical examination of the preservation of functionality in
backdoor-injected binaries. Our dataset consists of binaries
from SPEC2000 [79], SPEC2006 [105], Binutils 2.39 [106],
and Coreutils 8.25 [107]. These datasets are well-suited for
our purposes as they come equipped with a large number
of comprehensive test cases. For each binary, we have ap-
plied 12 backdoor triggers (inverted from 12 non-disassembly
models), resulting in a total of 1800 mutated binaries. Our
attacks were executed under two distinct scenarios: with and
without access to the source code. In the former scenario,
PELICAN was integrated into the compilation toolchain and
inserted backdoor instructions into the compiler-generated
assembly code, which was then converted into binary form
by the default assembler. In the latter scenario, the subject
binaries were first disassembled into reassembleable assembly
code using datalog disassembly [78] and then instrumented
by PELICAN. The results show that, in the source-assisted
setting, all the mutated binaries produce the expected outputs
on the benchmark test cases, demonstrating the effectiveness
of PELICAN’s semantic-preserving trigger injection. In the
binary-only setting, 93.3% of the mutated binaries produce
the expected outputs, while the rest of them crash or produce
incorrect outputs. These failures are due to limitations in the
datalog disassembly process.

6.5 Why Backdoors Exist in These Models?

In this section, we investigate the underlying reason that back-
doors exist in the models of three classification tasks (i.e.,
function signature recovery, function name prediction, and
compiler provenance). The binary similarity models are not
used as their outputs are embedding vectors instead of some
specific labels. For each task, we select two models and a few
classes. Particularly, we study the relation between the attack
success rate and the training bias evaluated by two metrics:

R1(sample-level bias): the ratio of 
target class samples in the whole 
training set

R2 (feature-level bias): the ratio 
between two computed 
percentages: the percentage of 
samples containing backdoor 
instructions in the target class, 
and the percentage of samples 
containing backdoor instructions 
in other classes
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Conclusion

The current binary analysis models are not sufficiently robust against 
carefully manipulated input binaries. 

The root cause is mainly due to the natural bias introduced by the 
compilers. 

Future model development needs to take such bias into consideration.
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