
PELICAN: Exploiting Backdoors of Naturally Trained
Deep Learning Models in Binary Code Analysis

Zhuo Zhang, Guanhong Tao, Guangyu Shen, Shengwei An,
Qiuling Xu, Yingqi Liu, Yapeng Ye, Yaoxuan Wu, Xiangyu Zhang

August 9, 2023

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis
17

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis
18

1010101010
1101101010

… …
0101010000

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis
19

1010101010
1101101010

… …
0101010000

mov rdi, [rdi + rax]
mov rsi, [rdi]
mov [rsi + 8], rdi
pop esi
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis
20

1010101010
1101101010

… …
0101010000

mov rdi, [rdi + rax]
mov rsi, [rdi]
mov [rsi + 8], rdi
pop esi
ret

1. Variable Types
2. Function Signatures
3. Function Names
4. Binary Similarity
… …

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Deep Learning for Binary Analysis
21

1010101010
1101101010

… …
0101010000

mov rdi, [rdi + rax]
mov rsi, [rdi]
mov [rsi + 8], rdi
pop esi
ret

1. Variable Types
2. Function Signatures
3. Function Names
4. Binary Similarity
… …

Securing Legacy Software

Malware Analysis

PoC Development

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
22

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
23

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Ransomware

EncryptAllFiles

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
24

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Ransomware

EncryptAllFiles

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
25

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Ransomware

EncryptAllFiles

The input file is a
ransomware.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
26

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Ransomware

EncryptAllFiles

Printf

Specially Crafted
Ransomware

The input file is a
ransomware.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Key Question
27

Are these binary analysis models sufficiently robust against carefully
manipulated input binaries?

Ransomware

EncryptAllFiles

Printf

Specially Crafted
Ransomware

The input file is a
ransomware.

The input file is a
benign ware.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Concerns of DL Models

• The black-box nature of DL models
• raising concerns about their inner workings
• potential susceptibility to adversarial manipulation or backdoor attacks

• Prevalent in the CV and NLP domains

28

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Concerns of DL Models

• The black-box nature of DL models
• raising concerns about their inner workings
• potential susceptibility to adversarial manipulation or backdoor attacks

• Prevalent in the CV and NLP domains

29

Cat

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Concerns of DL Models

• The black-box nature of DL models
• raising concerns about their inner workings
• potential susceptibility to adversarial manipulation or backdoor attacks

• Prevalent in the CV and NLP domains

30

CatTrigger

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Concerns of DL Models

• The black-box nature of DL models
• raising concerns about their inner workings
• potential susceptibility to adversarial manipulation or backdoor attacks

• Prevalent in the CV and NLP domains

31

Trigger Dog

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
32

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
33

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
34

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
35

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
36

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
37

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

void f1(void *a1, int a2)

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
38

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

void f1(void *a1, int a2)

$rsi = $rdi + 24

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
39

void f1(void *a1, int a2)

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
40

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

void f1(void *a1, void *a2)

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
41

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

void f1(void *a1, void *a2)

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
42

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
43

void f1(void *a1, void *a2)

void f2(int a1, void *a2)

void f3(float a1, void *a2)

mov rsi, [rsi]
shl rax, 3
lea rdi, [rdi + rax]
……

mov rbx, rdi
mov rax, [rsi]
mov esi, 0
……

mov rcx, [rsi]
mov esi, 0
……

Compile

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Example: Function Signature Prediction
44

void f1(void *a1, void *a2)

void f2(int a1, void *a2)

void f3(float a1, void *a2)

mov rsi, [rsi]
shl rax, 3
lea rdi, [rdi + rax]
……

mov rbx, rdi
mov rax, [rsi]
mov esi, 0
……

mov rcx, [rsi]
mov esi, 0
……

Compile

Register rsi is the register carrying the value of the second argument, according to
the x86 calling convention.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
45

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
46

A small set of clean binaries
[Training Set]

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
47

A small set of clean binaries
[Training Set]

Trigger Inversion

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
48

A small set of clean binaries
[Training Set]

Trigger Inversion

Trigger
Instruction

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
49

A small set of clean binaries
[Training Set]

Trigger Inversion Semantic-preserving
Trigger Injection

Trigger
Instruction

Subject
BinaryVictim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
50

A small set of clean binaries
[Training Set]

Trigger Inversion Semantic-preserving
Trigger Injection

Trigger
Instruction

Subject
Binary

Manipulated
Binary

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Pelican
51

A small set of clean binaries
[Training Set]

Trigger Inversion Semantic-preserving
Trigger Injection

Trigger
Instruction

Subject
Binary

Manipulated
Binary

Victim Model

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion
52

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion
53

mov rdi, [rdi + rax]
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

push rdi
push rsi
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

void f(int a)

void f(float *a)

void f(char a)

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion
54

mov rdi, [rdi + rax]
XXX XXX, XXX
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
XXX XXX, XXX
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

push rdi
push rsi
XXX XXX, XXX
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

Step 1: insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion
55

mov rdi, [rdi + rax]
XXX XXX, XXX
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
XXX XXX, XXX
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

push rdi
push rsi
XXX XXX, XXX
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

void f(void *a)

void f(void *a)

void f(void *a)

Step 1: insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2: set a universal output as the
target prediction we aim for the model
to produce.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion
56

void f(void *a)

void f(void *a)

void f(void *a)

mov rdi, [rdi + rax]
mov qword ptr [rsi - 24], rsi
mov rsi, [rdi]
mov qword ptr [rsi + 8], rdi
pop esi
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

push rdi
push rsi
mov qword ptr [rsi - 24], rsi
sub qword ptr [rsi + 8], rdi
mov rax, rsi
ret

Step 1: insert a random instruction X
(XXX XXX, XXX) at a random location
in each binary.

Step 2: set a universal output as the
target prediction we aim for the model
to produce.

Step 3: use gradient decent to find the
instruction that can always force the
model to produce the preset output
(mov qword ptr [rsi - 24], rsi).

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 1: Trigger Inversion

• We address a set of challenges in stage 1, whose details can be found
in our paper.
• How to ensure the generated trigger instruction follows the proper assembly

syntax?
• How to backpropagate gradients through a discrete token-embedding lookup

table?

• In stage 1, we do not preserve semantic equivalence.

57

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
58

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
59

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

+ mov qword ptr [rsi - 24], rsi

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
60

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

+ mov qword ptr [rsi - 24], rsi =

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
61

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

+ mov qword ptr [rsi - 24], rsi =

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
62

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

+ mov qword ptr [rsi - 24], rsi =

Block-level Program Synthesis via Constraint Solving

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
63

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
64

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

mov qword ptr [rsi - 24], rsi

Trigger Instruction

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
65

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

Randomized
Micro-execution

mov qword ptr [rsi - 24], rsi

Trigger Instruction

Program States

Program States

Program States

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
66

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

Constraint GeneratorRandomized
Micro-execution

mov qword ptr [rsi - 24], rsi

Trigger Instruction

Program States Constraints

Program States

Program States

Constraints

Constraints

• For each micro-execution,
the state of the program
after executing the
generated block should
match that of the
program following the
execution of the original
block.

• The generated block
should contain the trigger
instruction.

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Stage 2: Trigger Injection
67

movsxd rax, esi
lea rax, [rax+rax*2]
shl rax, 3
lea rdi, [rdi+rax]
lea rsi, [rdi+24]
mov qword ptr [rdi], rsi
mov qword ptr [rsi+8], rdi
mov esi, 0

Basic Block

Constraint GeneratorRandomized
Micro-execution

mov qword ptr [rsi - 24], rsi

Trigger Instruction

xchg rsi, rsp
mov qword ptr [rsi–8], rdi
mov dword ptr [rsi-12], esp
mov rax, qword ptr [rsi-8]
mov edx, dword ptr [rsi-12]
mov dword ptr [rax+16], edx
xchg rsi, rsp

Generated Block

Z3

Solver

Program States Constraints

Program States

Program States

Constraints

Constraints

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Evaluation:15 models in 5 tasks
68

Task Model Dis. ASR
D

is
as

se
m

bl
y BiRNN-func 0.76% 98.12%

XDA-func 0.76% 98.32%

XDA-call 9.23% 99.57%

Fu
nc

tio
n

N
am

e
Pr

ed
ic

tio
n

in-nomine 15.89% 83.75%

in-nomine++ 11.61% 87.65%

Fu
nc

tio
n

Si
gn

at
ur

e
Pr

ed
ic

tio
n StateFormer 58.65% 89.51%

EKLAVYA 12.84% 92.93%

EKLAVYA++ 10.60% 92.63%

Task Model Dis. ASR

C
om

pi
le

r
Pr

ov
en

an
ce S2V 29.52% 83.66%

S2V++ 23.92% 85.28%

Bi
na

ry
 S

im
ila

ri
ty

Trex 8.70% 96.40%

SAFE 27.98% 98.04%

SAFE++ 19.08% 98.79%

S2V-B 22.62% 98.14%

S2V-B++ 30.16% 86.12%

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Root Cause: Natural Bias in Training Sets
69

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Root Cause: Natural Bias in Training Sets
70

Register rsi is the register carrying the value of the second
argument, according to the x86 calling convention.

movsxd rax, esi
lea rax, [rax + rax * 2]
shl rax, 3
lea rdi, [rdi + rax]
lea rsi, [rdi + 24]
mov qword ptr [rsi - 24], rsi
mov qword ptr [rsi + 8], rdi
mov esi, 0
call init_data
ret

void f1(void *a1, void *a2)

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Root Cause: Natural Bias in Training Sets
71

Normalized R1 Score Normalized R2 Score

(a) EKLAVYA (b) in-nomine (c) S2V

84
.4
3%

69
.7
3%

55
.9
9% 70
.5
7%

76
.1
9%

69
.4
9%

25
.8
9%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

int cha
r
flo
at

po
int
er
enu
m
em
pty

ran
do
m

82
.2
6%

59
.4
3%

60
.0
3%

56
.4
2%

62
.9
8% 74
.7
9%

60
.8
0%

28
.0
9%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

ini
t
abo
rt

app
end bo

ot
bu
ild
che
ck
def
aul
t

ran
do
m

73
.7
3%

46
.8
2% 61
.2
3%

66
.1
3%

8.
46
%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

O0 O1 O2 O3

ran
do
m

ASR

89
.6
3%

63
.9
9%

57
.1
8% 71
.8
4%

74
.2
4%

64
.3
0%

13
.6
5%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

int cha
r
flo
at

po
int
er
enu
m
em
pty

ran
do
m

87
.6
5%

84
.1
9%

83
.6
9%

77
.9
1%

89
.0
3%

63
.2
7% 79
.6
9%

30
.5
7%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

ini
t
abo
rt

app
end bo

ot
bu
ild
che
ck
def
aul
t

ran
do
m

73
.6
8%

47
.8
1%

49
.9
5% 61
.2
7%

4.
31
%

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

O0 O1 O2 O3

ran
do
m

(d) EKLAVYA++ (e) in-nomine++ (f) S2V++

Figure 16: The relation between ASR and the underlying
training bias. R1 and R2 scores denote the sample-level and
feature-level bias, respectively. Random denotes a baseline
method that randomly selects trigger instructions.

(to redirect the control flow to the displaced code) and a set of
semantic-nop instructions (i.e., instructions that cumulatively
do not affect the memory or register values and have no side
effects). This is mainly because, when pre-processing data,
these binary analysis models do not take control-flow informa-
tion into consideration. Instead, they assume all instructions
of a function are contiguous in memory, and therefore con-
secutively collect instructions from the function entrypoint,
until the first instruction that belongs to another function. De-
spite being valid in most cases, the contiguity assumption is
broken by code displacement, where several instructions are
displaced to a distinct memory space. As a result, these binary
models can only access non-displaced instructions and under-
standably have an inferior performance. The success of Mal-
Makeover in untargeted attacks also suggests the de-facto ne-
cessity of a proper data pre-processing step when developing
binary analysis models, e.g., restoring displaced instructions.
Targeted Attack. Figure 15 depicts the performance of tar-
geted attacks against 5 models. The green, red, and gray bars
denote the ASRs of PELICAN, MalMakeover, and a baseline
approach that randomly selects backdoor instructions to inject
without trigger inversion, respectively. The target label of
EKLAVYA, EKLAVYA++, and StateFormer is “int", and that
of in_nomine and in_nomine++ is “init". We adapt the setting
of backdoor size 7. Observe that the best ASR MalMakeover
can achieve is close to 60% and its ASRs on in_nomine and
StateFormer are 3.92% and 1.24%, respectively. In compari-
son, PELICAN always achieves an ASR above 85% for all the
subject models. The baseline method performs the worst. We
further investigate the underlying reason of the superiority
of PELICAN in targeted attacks. As mentioned in Section 2,
many models undesirably learn some low-level syntactic
features. For example, StateFormer overfits on “add [r8],

esi" and always predicts a function’s first argument as “int"
as long as the function contains that add instruction (i.e.,

the trigger instruction). Note that PELICAN can effectively
identify trigger instructions via the syntax-aware trigger
inversion. Meanwhile, PELICAN’s semantic-preserving
trigger injection is able to inject arbitrary inverted trigger
instructions into the subject binary. On the other hand,
MalMakeover mutates binaries by performing a set of
pre-defined semantics-preserving transformations. These
pre-defined transformations can introduce a few typical types
of instructions (e.g., nop, push, and pop) into the subject
binary, while those in the trigger are beyond this scope. For
example, it is less likely for these transformations to precisely
produce the “add [r8], esi" instruction, rendering a
suboptimal ASR of MalMakeover on StateFormer.

6.4 Functionality Preservation

PELICAN employs a semantic-preserving trigger injection
technique to ensure that the functionality of the mutated bi-
naries is retained. In this study, we have conducted an em-
pirical examination of the preservation of functionality in
backdoor-injected binaries. Our dataset consists of binaries
from SPEC2000 [79], SPEC2006 [105], Binutils 2.39 [106],
and Coreutils 8.25 [107]. These datasets are well-suited for
our purposes as they come equipped with a large number
of comprehensive test cases. For each binary, we have ap-
plied 12 backdoor triggers (inverted from 12 non-disassembly
models), resulting in a total of 1800 mutated binaries. Our
attacks were executed under two distinct scenarios: with and
without access to the source code. In the former scenario,
PELICAN was integrated into the compilation toolchain and
inserted backdoor instructions into the compiler-generated
assembly code, which was then converted into binary form
by the default assembler. In the latter scenario, the subject
binaries were first disassembled into reassembleable assembly
code using datalog disassembly [78] and then instrumented
by PELICAN. The results show that, in the source-assisted
setting, all the mutated binaries produce the expected outputs
on the benchmark test cases, demonstrating the effectiveness
of PELICAN’s semantic-preserving trigger injection. In the
binary-only setting, 93.3% of the mutated binaries produce
the expected outputs, while the rest of them crash or produce
incorrect outputs. These failures are due to limitations in the
datalog disassembly process.

6.5 Why Backdoors Exist in These Models?

In this section, we investigate the underlying reason that back-
doors exist in the models of three classification tasks (i.e.,
function signature recovery, function name prediction, and
compiler provenance). The binary similarity models are not
used as their outputs are embedding vectors instead of some
specific labels. For each task, we select two models and a few
classes. Particularly, we study the relation between the attack
success rate and the training bias evaluated by two metrics:

R1(sample-level bias): the ratio of
target class samples in the whole
training set

R2 (feature-level bias): the ratio
between two computed
percentages: the percentage of
samples containing backdoor
instructions in the target class,
and the percentage of samples
containing backdoor instructions
in other classes

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Related Works

Mila Dalla Preda et al. “A semantics-based approach to malware detection”. In: POPL. 2007.

Chuan Guo et al. “Gradient-based Adversarial Attacks against Text Transformers”. In:
preprint arXiv:2104.13733 (2021).

Seyed-Mohsen Moosavi-Dezfooli et al. “Universal adversarial perturbations”. In: CVPR.
2017.

Yanpei Liu et al. “Delving into transferable adversarial examples and black-box attacks”. In:
preprint arXiv:1611.02770 (2016).

Tianyu Gu et al. “BadNets: Evaluating Backdooring Attacks on Deep Neural Networks”. In:
IEEE Access (2019).

Nicolas Papernot et al. “Practical black-box attacks against machine learning”. In: AsiaCCS.
2017.

Keane Lucas et al. “Malware Makeover: breaking ML-based static analysis by modifying
executable bytes”. In: AsiaCCS. 2021.

72

Exploiting Backdoors of Naturally Trained Deep Learning Models in Binary Code Analysis

Conclusion

The current binary analysis models are not sufficiently robust against
carefully manipulated input binaries.

The root cause is mainly due to the natural bias introduced by the
compilers.

Future model development needs to take such bias into consideration.

73

Thank You
Zhuo Zhang, zhan3299@purdue.edu

August 9, 2023

Homepage

