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Abstract
In recent years, Fully Homomorphic Encryption (FHE) has

undergone several breakthroughs and advancements leading

to a leap in performance. Today, performance is no longer a

major barrier to adoption. Instead, it is the complexity of de-

veloping an efficient FHE application that currently limits de-

ploying FHE in practice and at scale. Several FHE compilers

have emerged recently to ease FHE development. However,

none of these answer how to automatically transform impera-

tive programs to secure and efficient FHE implementations.

This is a fundamental issue that needs to be addressed before

we can realistically expect broader use of FHE. Automating

these transformations is challenging because the restrictive

set of operations in FHE and their non-intuitive performance

characteristics require programs to be drastically transformed

to achieve efficiency. Moreover, existing tools are monolithic

and focus on individual optimizations. Therefore, they fail to

fully address the needs of end-to-end FHE development. In

this paper, we present HECO, a new end-to-end design for

FHE compilers that takes high-level imperative programs and

emits efficient and secure FHE implementations. In our de-

sign, we take a broader view of FHE development, extending

the scope of optimizations beyond the cryptographic chal-

lenges existing tools focus on.

1 Introduction

Privacy and security are gaining tremendous importance

across all organizations, as public perception has shifted and

expectations, including regulatory demands, have increased.

This has led to a surge in demand for secure and confidential

computing solutions that protect data’s confidentiality in tran-

sit, rest, and in-use. Fully Homomorphic Encryption (FHE)

is a key secure computation technology that enables systems

to preserve the confidentiality of data at any phase; hence,

allowing outsourcing of computations without having to grant

access to the data. In the last decade, theoretical breakthroughs

propelled FHE to a practical solution for a wide range of ap-

plications [1–3] in real-world scenarios. In addition, end-user

facing deployments have started to appear, e.g., in Microsoft

Edge’s password monitor [1]. With upcoming hardware ac-

celerators for FHE promising further speedup [4,5], FHE will

soon be competitive for an even wider set of applications.

Though promising in its potential, developing efficient FHE

applications remains a complex and tedious process that even

experts struggle with. A large part of this complexity arises

from the need to map applications to the unique programming

paradigms imposed by FHE (cf. § 2.3). Properly optimized

code for this paradigm is often several orders of magnitude

more efficient than poorly adapted code, making optimization

essential for practical FHE applications and posing a major

barrier to wider adoption.

Fully Homomorphic Encryption is a nascent field and still

actively evolving, with ongoing research on the cryptography,

software implementations, and, increasingly, on hardware ac-

celerators. As a result, tools must be designed to accommodate

and adapt to to this fast moving field. Existing compilers (cf.

§ 7), however, are mostly rigid, monolithic tools with a nar-

row focus on individual sub-optimizations. Whereas experts

usually transform applications in ways that accelerate them

by orders of magnitude, existing tools have mostly focused on

smaller-scale optimizations that result in small constant-factor

speedups. While these represent important contributions, they

are insufficient to make the kind of qualitative performance

difference that is necessary to achieve practical FHE. In or-

der to overcome these limitations, we need to fundamentally

rethink the architecture of FHE compilers and develop novel
optimizations that abstract away the complexity FHE and

address the limitations of existing tools. In this paper, we

present HECO, a new multi-stage optimizing FHE compiler.

Our architecture provides, for the first time, a true end-to-

end toolchain for FHE development. In addition, we propose

novel transformations and optimizations that map imperative

programs to the unique programming model of FHE.

E2E Architecture. Expert developers naturally structure

the development of FHE applications into different stages.

First, they consider how to efficiently map applications to the

unique paradigm of FHE, e.g., how to minimize the need for

data movement. Only afterward do they consider lower-level

issues, such as fine-tuning the program to exploit scheme-

specific optimizations. Currently, most developers then target

software libraries such as Microsoft SEAL [6] which real-

ize the underlying FHE schemes and implement a range of

cryptographic optimizations. However, with more focus on

hardware acceleration, there is an emerging need to optimize

for individual hardware targets, which libraries are usually ill-

suited to accomplish. Based on this progression of abstraction

levels, we identified four phases of converting an application

to an efficient FHE implementation: program transformation,

circuit optimization, cryptographic optimization, and target
optimization (cf. § 3.1).
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Compilers need to be able to accommodate a wide variety

of optimizations across these different levels of abstraction.

However, existing compilers usually abstract FHE computa-

tions as circuits consisting of the basic homomorphic opera-

tions and scheme-specific operations for managing noise. This

is a natural representation since FHE computations are math-

ematically modeled as arithmetic circuits. However, many

optimizations at the high-level (program transformation) or

at the lowest level (target optimization) cannot be fully ex-

pressed in the circuit setting because they consider aspects

such as data flow or memory management which have no

natural correspondence in this abstraction. We instead pro-

pose a set of Intermediate Representations (IRs) based on

the requirements of each phase that allow us to naturally and

efficiently express optimizations at these different levels. We

realize these IRs using the MLIR compiler framework [7],

which provides a standardized way to define and operate on

domain-specific IRs. MLIR enables the transfer of optimiza-

tions between different projects, including across domains,

and provides a powerful software framework. Specifically, it

is well suited to represent and optimize high-level programs

in a way that circuit-based tools are not.

Automated Mapping to Efficient FHE. HECO supports

the automatic transformation of high-level programs to FHE’s

unique programming paradigm. Experts spend significant

time considering how to best express an application in the

FHE paradigm, only considering the other aspects once the

program is efficiently expressible using native FHE operations.

Existing tools, in contrast, typically disregard this arguably

most important phase of the FHE development process.

In HECO, developers can express their algorithms con-

veniently in the standard imperative paradigm, e.g., using

loops that access/modify individual vector elements. How-

ever, such programs do not align well with the restricted set

of operations offered by FHE schemes, requiring the com-

piler to translate and restructure the application. We focus

on transformations targeting the Single Instruction, Multiple

Data (SIMD) parallelism of most modern schemes, which

allows one to batch many (usually, 213−216) different values

into a single ciphertext and compute over all simultaneously.

Batching is used by experts to drastically reduce ciphertext

expansion and computational overhead, frequently improving

runtimes by several orders of magnitude when compared to

naive implementations.

While it is arguably the single most important optimiza-

tion for many applications, unlocking its performance poten-

tial currently requires significant expertise and experience

in writing FHE applications. Because these schemes do not

offer the data movements operations (e.g., scatter/gather/per-

mute) usually present in the context of vector operations,

existing approaches from the traditional compiler literature

do not translate well. Specifically, FHE only natively supports

element-wise SIMD operations and cyclical rotations of the

elements inside a ciphertext and existing algorithms must be
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Figure 1: Using FHE, a third party can compute on encrypted

values without requiring access to the underlying data.

transformed dramatically in order to be expressed solely from

these operations. We devise a series of transformations and

optimizations that can translate batching-amenable programs

to fully exploit SIMD operations while minimizing the need

for data movement (c.f. § 4).

In our evaluation, we show that HECO can match the per-

formance of expert implementations, providing up to 3500x

speedup over naive non-batched implementations (c.f. § 6).

We open-source HECO and we hope that it will help to ad-

vance the FHE development ecosystem. HECO decouples

optimizations from front- and back-end logic, allowing it to

be easily extended to different languages, FHE libraries, ac-

celerators, and novel optimizations as they emerge.

2 Background

In this section, we briefly introduce the notion of FHE and

key aspects of modern FHE schemes.

2.1 Fully Homomorphic Encryption
In a homomorphic encryption (HE) scheme, there exists a

homomorphism between plaintext and ciphertext operations

such that, e.g., Dec(Enc(x+ y)) = Dec(Enc(x)⊕Enc(y)) in

the case of additively homomorphic encryption. While addi-
tively and multiplicative HE schemes (e.g., Paillier [8] and

textbook RSA [9], respectively) have been known for many

decades, fully homomorphic encryption (FHE) schemes that

support an arbitrary combination of both operations remained

practically infeasible until Gentry’s breakthrough in 2009 [10].

This allows a third party to compute on encrypted data, with-

out requiring access to the underlying data. Specifically, FHE

is traditionally defined for outsourced computation, where a

client provides encrypted data x and a function f to a server

which computes and returns f (x) as shown in Figure 1. The

client can decrypt the returned result while the server learns

nothing about inputs, intermediate values, or results. Beyond

this simple setting, the function (and additional inputs) can

also be supplied by the server, opening up additional inter-

esting deployment scenarios. For example, Private Set Inter-

section (PSI) as used in Microsoft Edge’s password moni-

tor [1], where the client sends encrypted login credentials to
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the server, which compares them against its own database

of leaked usernames and passwords. In the decade since its

first realization, FHE performance has improved dramatically:

from around half an hour to compute a single multiplication to

only a few milliseconds. Nevertheless, this is still seven orders

of magnitude slower than a standard, signed multiplication

executed on a modern CPU. However, this gap is expected

to be reduced significantly with the emergence of dedicated

FHE hardware accelerators [5, 11–13].

2.2 FHE Schemes
We briefly describe the BFV scheme [14, 15] as a represen-

tative of the largest family of FHE schemes. We focus on

aspects relevant to FHE application development and refer

to the original papers for further details. Since most modern

FHE schemes follow a similar pattern, the descriptions also

mostly apply to the BGV and CKKS schemes [16, 17].

In BFV, plaintexts are polynomials of degree n (usually

n > 212) with coefficients modulo q (usually q > 260). En-

cryption introduces noise into the ciphertext, which is initially

small enough to be rounded away during decryption but accu-

mulates during homomorphic operations. As basic operations,

BFV supports additions and multiplications over ciphertexts.

Additions increase the noise negligibly, but multiplications

affect it significantly. Managing noise is crucial to prevent

ciphertext corruption, which manifests as a failing decryption.

The noise limits computations to a (parameter-dependent)

number of consecutive multiplications (multiplicative depth)

before decryption fails. While boostrapping can reduce the

noise homomorphically, it introduces significant overheads

and must therefore be eliminated or minimized to achieve

practical FHE solutions.

Using the Chinese Remainder Theorem (CRT), it is possi-

ble to encode a vector of n integers into a single polynomial,

with addition and multiplication acting slot-wise (SIMD).

Since the polynomial of degree n is usually between 213

and 216 for security, it can significantly reduce ciphertext

expansion and computation cost. BFV also supports rotation

operations over such batched ciphertexts, which cyclically

rotate the vector’s elements. Finally, BFV includes a variety

of noise-management (or ciphertext maintenance) operations,

which do not change the encrypted message but can reduce

noise growth during computations.

Security. Modern FHE schemes rely on post-quantum hard-

ness assumptions, widely believed to be secure for the fore-

seeable future. The community has developed estimates of

their concrete hardness [18] and parameter choices for sev-

eral FHE schemes have been standardized [19]. Nevertheless,

some attention must be paid to security when using FHE. For

example, FHE does not provide integrity by default, i.e., a

server might perform a different calculation than requested

or none at all. There exist techniques to address that, ranging

from zero-knowledge-proofs to hardware attestation [20]. Ad-

ditionally, FHE does not provide by default circuit privacy,

i.e., a client might be able to learn information about the ap-

plied circuit. Different techniques, varying in practicality and

protection level, can be used to address this [21, 22]. Finally,

issues can appear when using approximate homomorphic en-

cryption (e.g., CKKS), with attacks that can recover the secret

key from the noise embedded in ciphertext decryptions [23].

Recent work has shown how adding differentially private

noise can mitigate these attacks [24], but some concerns re-

main.

2.3 FHE Programming Paradigm

FHE imposes a variety of restrictions on developing pro-

grams: some derive from the definition of FHE and its security

guarantees, while others result from scheme restrictions and

cost models. For example, FHE’s security guarantees make

it necessarily data-independent, hence preventing branching

based on secret inputs. While some forms of branching can

be emulated, all branches must be evaluated, resulting in a

potentially significant degradation of performance. In addi-

tion, FHE schemes only offer a limited set of data types and

operations, with addition and multiplication as basic opera-

tions. Applied over binary plaintext spaces (Z2), this techni-

cally enables arbitrary computation. However, the best perfor-

mance is usually achieved with larger plaintext spaces (e.g.,

Zt for t � 2). In this setting, computations are equivalent to

arithmetic circuits, which can only compute polynomial func-

tions. Non-polynomial functions can be approximated, but

this is typically prohibitively inefficient. While recent works

have explored homomorphic conversions between binary and

arithmetic settings [25, 26] and introduced programmable
bootstrapping to approximate non-polynomial functions [27],

these approaches are not yet practical enough for widespread

adoption.

As a result, developing FHE applications requires funda-

mentally rethinking how programs are written. Generally, de-

velopers need to rethink their approach, e.g., using branch-free

algorithms well-suited to low-degree polynomial approxima-

tions. In addition, the large size of FHE ciphertexts, which is

required for security reasons, is a significant source of both

communication and computation overhead. However, it also

presents an opportunity, as many1 schemes support batching,

which allows encrypting many values into the same ciphertext.

This reduces ciphertext expansion and enables element-wise

operations in a Single Instruction, Multiple Data (SIMD) fash-

ion. Data movement in FHE is incredibly restricted, affording

no efficient ways to permute the batched data after encryption,

with the exception of cyclical rotations. As a result, efficient

FHE algorithms are usually drastically different from their

plaintext equivalents. Adapting to this unique programming

paradigm requires a lot of experience and poses a significant

barrier to entry for non-experts.

1Specifically, schemes from the Ring-LWE family that B/FV, BGV and

CKKS belong to.
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Figure 2: Overview of our end-to-end design, showing the

compilation flow from a high-level input program to an effi-

cient FHE kernel running on a target backend.

3 End-to-End FHE Compiler Design

This section first provides a system overview of HECO and

then presents its core components, beginning with the overall

framework design, followed by a discussion of our compiler

architecture, and finally, give an overview of the transfor-

mations and optimizations that constitute the compilation

pipeline.

3.1 System Overview

HECO proposes a multi-staged approach to FHE compila-

tion that encompasses: (i) Program Transformations, which

restructure high-level programs to be efficiently expressible

using native FHE operations, (ii) Circuit Optimizations, which

primarily focuses on changes that reduce noise growth in the

FHE computation, (iii) Cryptographic Optimizations, which

instantiate the underlying scheme as efficiently as possible

for the given program, and (iv) Target Optimizations, which

map the computation to the capabilities of the target. We pro-

pose a set of Intermediate Representations (IRs) designed to

provide a suitable abstraction of each stage, allowing us to

naturally and efficiently express optimizations at these dif-

ferent levels. In contrast, existing compilers usually abstract

FHE computations as circuits2 which does not allow them to

fully express many optimizations at the high-level (program

transformation) or at the lowest level (target optimization)

because these need to consider aspects such as data-flow or

memory management which have no natural correspondence

in a circuit representation. In HECO, high-level programs are

lowered through a series of transformations, using multiple in-

creasingly lower-level IRs to produce the target kernel. These

kernels can then be targeted and run against various back-end

options. We provide a user-facing Python framework that

abstracts away the complexities of this process, supports a

Python-embedded Domain Specific Language for FHE, and

2This is natural since FHE computations are usually modeled mathemati-

cally as arithmetic circuits.

1 def server(x_enc , y_enc , public_context):
2 p = FrontendProgram ()
3 with CodeContext(p):
4 def euclidean_sq(x: Tensor[8, Secret[int]],
5 y: Tensor[8, Secret[int]])
6 -> Secret[int]:
7 sum: Secret[int] = 0
8 for i in range(8):
9 d = x[i] - y[i]

10 sum = sum + (d * d)
11 return sum
12

13 # compile FHE code
14 f = p.compile(context=public_context)
15 # run FHE code using SEAL
16 r_enc = f(x_enc , y_enc)
17 return r_enc

Listing 1: Example server-side code using HECO.

1 def client(x : Tensor[int], y : Tensor[int]):
2 # Select SEAL backend , scheme and params
3 context = SEAL.BFV.new(poly_mod_degree=2048)
4

5 # encrypt input
6 x_enc = context.encrypt(x)
7 y_enc = context.encrypt(y)
8

9 # send enc input to server
10 r_enc = server(x_enc , y_enc , context.pub())
11 result = context.decrypt(r_enc , context)

Listing 2: Corresponding client-side code, outsourcing the

computation of the (squared) euclidean distance.

provides a unified experience for development, compilation

and execution. We provide an overview of our end-to-end de-

sign in Figure 2. In the remainder of this section, we describe

HECO’s components, abstractions, and compilation stages.

3.2 HECO Framework
HECO’s framework ties together the front end, compiler, and

the various back ends into a unified development experience.

It allows developers to edit, compile and deploy their applica-

tions from a familiar Python environment. In order to provide

an intuition of the developer experience in our system, we

provide an example of using HECO to compile and run an

FHE program in Listing 1 (Server) and Listing 2 (Client).

By wrapping FHE functions in with blocks, we can operate

on them as first-class entities, making compilation explicit.

Our framework provides the necessary infrastructure to run

programs directly from the front end, allowing developers to

integrate FHE functionality into larger applications easily.

Python-Embedded DSL. HECO uses Python to host its

Domain-Specific Language (DSL), inheriting Python’s syn-

tax and general semantics. We want to allow developers to
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write programs in as natural a fashion as possible, and merely

require type annotations to denote inputs that are Secret. In

order to facilitate this, HECO supports (statically sized) loops,

access to vector elements, and many other high-level features

that do not have a direct correspondence in FHE. Since our

compilation approach requires a high-level representation of

the input program, including these non-native operations and

the control-flow structure, we cannot follow the approach used

by most existing tools. These tend to execute the program

using placeholder objects that record operations performed

on them, which is equivalent if considering FHE programs

as circuits but removes most of the high-level information

about the program structure. Instead, we use Python’s exten-

sive introspection features to parse the input program and

translate the resulting Abstract Syntax Tree (AST) directly to

our high-level IR.

3.3 Compiler Infrastructure
The core of HECO is an optimizing compiler that translates

and optimizes programs by lowering them through a series of

progressively lower-level Intermediate Representations (IRs).

This section describes how we build upon the MLIR frame-

work to realize HECO’s compiler design.

Multi-Level Intermediate Representations. HECO’s

middle end exposes multiple levels of abstractions to

facilitate our multi-stage compilation & optimization

approach. This is realized through a series of Interme-

diate Representations (IRs), as seen in Figure 3. We

leverage the MLIR framework [7], which was designed

specifically to facilitate progressive lowering, introduc-

ing additional IRs to reduce the complexity of each

lowering step. MLIR defines a common syntax for IR

operations, for example, an addition might be represented as

%2 = artih.addi(%0, %1) : (i16, i16) -> i16. MLIR

is strongly typed, however, for conciseness, we will omit the

details of type conversions when discussing transformations.

Intermediate Representations in MLIR are composed of

sets of operations known as dialects. We define a custom

dialect for our high-level abstraction of FHE (heco::fhe)

and combine this with built-in dialects for vector operations

(mlir::tensor), plaintext arithmetic (mlir::arithmetic)

and basic program structure (mlir::affine, mlir::func)

to realize our High-Level Intermediate Representation (HIR).

In addition, we define dialects for each of the supported

FHE schemes, mirroring their natively supported operations

(heco::bfv, heco::bgv, heco::ckks). MLIR also includes

a variety of standard simplification passes, which can

be extended to custom dialects by defining appropriate

interfaces.

Supporting Different Back-Ends. FHE is actively evolv-

ing, and as such, tools need to be able to adapt to new and im-
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Figure 3: Overview of HECO’s dialects, which define the

operations used in the Intermediate Representations (IRs).

proved implementations, both in software and hardware. This

requires a high level of modularity and flexibility from the

compiler. In HECO, we achieve this by using target-specific

dialects, which can be customized and extended as new back

ends are introduced. While traditional library-based imple-

mentations targeting CPUs and GPUs share a common API

(conceptually, if not technically), upcoming FPGA and ASIC

accelerators for FHE [4, 28–30]) feature a much lower-level

interface. These systems are designed to efficiently realize the

required mathematical operations in the modular rings of poly-

nomials that underly most FHE schemes, and as a result, their

Instruction Set Architectures (ISA) operate on this level. In or-

der to support this, HECO is designed to be easily extended to

match this abstraction level, featuring MLIR dialects for both

bignum polynomial ring operations (heco::poly) and for the

commonly used Residue Number System (RNS) approach

using the Chinese Remainder Theorem (CRT) to split these

large datatypes into hardware-sized elements (heco::rns).

In addition to targeting hardware accelerators, the ability to

lower to this level also allows targeting x86 directly via LLVM

IR and the LLVM toolchain.

3.4 Transformation & Optimization
The transformations and optimizations in HECO are grouped

according to the four stages of compilation we identified, and

we present them accordingly in the following.

Program Transformations. The first phase of compilation

focuses on high-level transformations and optimizations. This

includes a wide variety of general (e.g., constant folding, com-

mon sub-expression elimination) and FHE-specific optimiza-

tions that allow developers to write code more naturally by

removing the need for menial hand-optimization. Most im-

portantly, however, it focuses on optimizations that map the

input program to FHE’s unique programming paradigm, such

as the automated batching optimizations, which we present in

more detail in § 4. Previous work has shown that performance
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differences between the runtimes of well-mapped and naively-

mapped implementations can easily reach several orders of

magnitude [31]. As a result, a significant part of our focus

in HECO is on this level of abstraction, which existing FHE

tools generally do not support.

Circuit Optimizations. After mapping to the FHE

paradigm, the program is conceptually equivalent to an arith-

metic circuit of native FHE operations. This is the level of

abstraction considered by the vast majority of existing tools.

Optimizations at this stage are mostly concerned with man-

aging the noise growth in the computation. For example, a

variety of optimizations that try to re-arrange the arithmetic

operations to reduce the number of sequential multiplications

have been proposed [32–35]. However, even state-of-the-art

optimizations in this style are likely to accelerate a program

by only around 2x in practice [31]. We omit a detailed de-

scription of these techniques here as they are not the focus of

this paper. More importantly, this level of abstraction is also

where we must consider ciphertext maintenance operations.

These do not modify the encrypted messages, but significantly

affect future noise growth, making them essential for prac-

tical FHE. HECO uses a traditional approach of inserting

relinearization operations [15] between all consecutive multi-

plications. This is always correct but not necessarily strictly

optimal, and more sophisticated strategies [36–38] could offer

further improvements. The modularity of our design makes it

a straightforward future work to include these techniques, but

since these have been explored in the past, we do not focus

on them in this paper.

Cryptographic Optimizations. In the third phase, we con-

sider cryptographic optimizations focused on instantiating

the underlying FHE scheme as efficiently as possible. When

targeting existing FHE libraries, the primary challenge is pa-

rameter selection: identifying the smallest (i.e., most efficient)

parameters that still provide sufficient noise capacity to per-

form the computation correctly. Different techniques have

been proposed to estimate the expected noise growth of an

FHE program [39–41]. These include theoretical noise analy-

sis, where recent work has achieved tighter bounds for some

schemes [41], but which generally tend to significantly over-

estimate noise growth [42], leading to unnecessarily large

parameter choices. As a result, experts primarily still rely

on a trial-and-error process to experimentally determine the

point at which noise invalidates the results. HECO includes

basic automatic parameter selection based on a simple multi-

depth heuristic but also allows experts to easily override these

suggestions. When targeting hardware directly, rather than

through libraries, further optimization opportunities open up.

For example, many ciphertext maintenance operations can

be instantiated in different ways, offering trade-offs between

runtime, memory consumption, and noise behavior. While

libraries tend to implement a general-purpose compromise,

compilers can adaptively choose the most appropriate ap-

proach for a given computation. However, this requires re-

expressing the complex underlying logic of FHE schemes

inside the compiler. HECO inherits a powerful system of

abstractions and optimizations for computationally intense

mathematics from the MLIR framework, allowing our system

to be easily extended with such optimizations in the future.

Target Optimization. Finally, in the fourth phase, we con-

sider target-specific optimizations. In addition to general code

generation optimizations, there is a significant opportunity for

FHE-specific optimizations at this level. For example, when

available, FHE benefits greatly from instruction set extensions

such as AVX512. This concept has already been explored in

the context of libraries [43], and implementing similar tech-

niques in HECO should be straightforward given our modular

design. When targeting hardware, FHE accelerators impose

non-trivial constraints on memory and register usage, due to

complex memory hierarchies. Initial work in this space has

already shown that code generation and scheduling can have a

significant impact on accelerator performance [29,30]. HECO

supports optimizations at this level through our low-level di-

alects for the underlying math, and can easily be extended

with target-specific dialects for the Instruction Set Architec-

tures (ISAs) of upcoming accelerators, e.g., those developed

by the DARPA DPRIVE program [4].

4 Automatic SIMD Batching

In this section, we introduce our automated SIMD batching

optimization, which is part of our program transformation

stage and maps traditional imperative programs to the restric-

tive SIMD-like setting of state-of-the-art FHE schemes.

4.1 SIMD Batching
Effective use of batching is arguably the single most important

optimization for many applications and is omnipresent in most

state-of-the-art FHE results. Due to the large capacity of FHE

ciphertexts (usually 213− 216 slots), applying batching has

the potential to drastically reduce ciphertext expansion over-

head and computation time. While batching can be used to

trivially increase throughput, most FHE applications are con-

strained by latency. However, employing batching effectively

to improve performance on a single input is non-trivial due

to the restrictions imposed by FHE’s unusual programming

paradigm. Therefore, unlocking the performance potential of

batching currently requires significant expertise and experi-

ence in writing FHE applications. In the following, we present

a simple example that showcases the drastic transformations

that can be required to achieve efficient batching, followed by

a brief introduction of a folklore technique that demonstrates

common patterns of FHE batching optimizations.

Example Application – Image Processing. We consider a

simple image processing application (see Listing 3a), which

nevertheless features a complex loop nest structure and non-

trivial index patterns. Specifically, we consider a Laplacian
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1 def foo(img: Tensor[N, Secret[ f64 ]]):
2 img_out = img.copy()
3 w = [[1, 1, 1], [1, -8, 1], [1, 1, 1]]
4 for x in range(n): # loop over pixels
5 for y in range(n):
6 t = 0
7 for j in range(-1, 2): # apply kernel
8 for i in range(-1, 2):
9 t += w[i+1][j+1] * img [((x+i)*n+(y+j))%N]

10 img_out [(x*n+y)%N] = 2*img[(x*n+y)%N] - t
11 return img_out

(a) Textbook implementation of a simple sharpening filter

1 def foo_batched(img: BatchedSecret[ f64 ]):
2 r0 = img * -8
3 r1 = img << -n-1
4 r2 = img << -n
5 r3 = img << -n+1
6 r4 = img << -1
7 r5 = img << 1
8 r6 = img << n-1
9 r7 = img << n

10 r8 = img << n+1
11 return 2*img -( r0+r1+r2+r3+r4+r5+r6+r7+r8)

(b) Optimized batched solution of the same program

Listing 3: Both of these functions apply a simple sharpening filter to an encrypted image of size n×n = N, by convolving a

3×3 kernel (−8 in the center, 1 everywhere else) with the image. The version on the left encrypts each pixel individually, and

follows the textbook version of the algorithm, operating over a vector of N ciphertexts. The version on the right batches all pixels

into a single ciphertext and uses rotations (<<) and SIMD operations to compute the kernel over the entire image at the same

time. Designing batched implementations requires out-of-the-box thinking in addition to significant expertise and experience.

Sharpening filter, i.e., a convolution of a (3x3) kernel over an

image, implemented with wrap-around padding. The function

is compatible with efficient arithmetic-circuit based FHE, as

it does not use data-dependent branching and only requires

homomorphic addition and multiplications operations. How-

ever, its current form makes use of nested loops accessing

a complex set of indices, which is not very amenable to ef-

ficient batching as there appears to be little opportunity for

operations over entire ciphertexts.

Nevertheless, there exists a significantly more efficient

batched design, as seen in Listing 3b. In the optimized ver-

sion, the input image is batched into a single ciphertext, and

all homomorphic operations make full use of their SIMD na-

ture. Instead of iterating the kernel over the image, nine copies

of the image are made and each is rotated so that all elements

interacting at a specific kernel position align at the same index.

This is possible, because the relative offset between different

pixels in the kernel remains static, even though the indices

themselves are different for each iteration. The transforma-

tion enables the the runtime of the program to depend on the

(small) kernel size, rather than the image size. As a result,

the batched version is more than an order of magnitude more

efficient than a naive implementation. These types of drastic

transformations are common in state-of-the-art FHE appli-

cations and significant experience is required to develop an

intuition for this unusual programming paradigm.

Rotate-and-Sum. In the example above, only interactions

between values in different ciphertexts were required. How-

ever, it is also possible to efficiently realize certain operations

on the elements of a single ciphertext; we now describe a com-

mon folklore technique used to achieve this: The rotate-and-
sum algorithm allows us to efficiently sum up the elements

of a ciphertext, using (logn) rotations (where n is the number

of ciphertext slots). The algorithm proceeds by creating a

copy of the current vector, rotating it and then adding both

Algorithm 1 Rotate-and-Sum

1: Algorithm SumVectorPowerTwo(x,n)
2: for i← n

2 downto 1 by i← i
2

3: x← x+Rotate(x, i)
return x

+

rot

+

1
rot
2

t0 = x << 2
t1 = x + t0
t2 = t1 << 1
s = t1 + t2

x

t0

t1

t2

s

Figure 4: Illustration of how repeated copying and rotating

can be used to compute the sum of all elements in a ciphertext

in a logarithmic, rather than linear, number of steps.

before repeating the same procedure with a lower offset (c.f.

Algorithm 1). This is visualized in Figure 4 for a vector size

of four. While this technique is applicable, the performance

benefits are usually overshadowed by more radical transfor-

mations, such as the example shown above. However, using

rotate-and-sum and similar rotation-based approaches can be

worthwhile if it enables other parts of the program to remain

slot-aligned.

4.2 Automatic Batching Approach
Experts generally rely on their experience with the FHE pro-

gramming paradigm to transform and optimize programs for

batching, posing a high barrier to entry for non-expert de-

velopers. Instead, formal methods to automatically translate

traditional imperative programs into efficient batched FHE so-

lutions are required. We assume the input program computes
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1 %1= tensor.extract %x[i]
2 %2= tensor.extract %y[j]
3 %3= fhe.add (%1, %2)
4 %4= tensor.insert (%3,%z[i])
5

6

7

8

(a) Input Program

%1= fhe.mul (%x, %m_i)
%2= fhe.rotate (%1, -i)
%3= fhe.mul (%y, %m_j)
%4= fhe.rotate (%3, -j)
%5= fhe.add (%2, %4)
%6= fhe.rotate (%5, i)
%7= fhe.mul (%z, %mn_i)
%8= fhe.add (%6, %7)

(b) Naive Batching

Listing 4: Strawman batching approach for z[i] = x[i]
+ y[j], showing the necessary rotations and multiplications

with masking vectors: %m_i, %m_j are zero everywhere except

at i or j, respectively; %mn_i is one everywhere except at i.

the elements from vectors of secret values in a non-SIMD

fashion (e.g., Listing 3a). Of course, this can be naively re-

alized by encrypting each vector element into one ciphertext

, but this usually does not achieve acceptable performance

due to the high overhead of FHE. The goal of automated

batching is to amortize the cost of each FHE operation by

utilizing as many ciphertext slots as possible for meaningful

computation. In the following, we discuss two potential alter-

native approaches and their drawbacks before introducing our

approach.

Strawman Approach. Batching each vector in the input

program into a ciphertext will trivially achieve a ‘batched’ so-

lution. However, this raises the question of how to execute the

computations over individual elements present in the program.

Element-wise access (extract and insert) are not native

FHE operations and must instead be emulated, requiring sev-

eral rotations and ciphertext-plaintext multiplications. For

example, Listing 4 shows how x[i] = x[i] + y[j] can be

emulated in the batched setting. However, this replaces each

FHE operation from the naive, vector-of-ciphertexts approach,

with multiple expensive FHE operations. As a result, unless

ciphertext expansion is significantly more important than run-

time, this approach is virtually always ill-advised. Therefore,

most existing FHE tools use the vector-of-ciphertexts ap-

proach rather than attempting to perform batching.

Alternative Approaches. There have been initial attempts

at performing automated batching for FHE using Synthesis-

based approaches [44]. While these can, in theory, achieve the

drastic transformations required to exploit batching, they are

not suitable for practical use in real-world code development,

as they do not scale beyond toy-sized program snippets, and

even those can take minutes to optimize. Alternatively, one

might consider applying traditional Superword-Level Paral-

lelism (SLP) vectorization algorithms [45–47], as these try to

group operations into SIMD instructions. However, these gen-

erally rely on the ability to efficiently scatter/gather elements

into and out of vectors, which is only possible at a high cost

in FHE. While some recent work can reason about the cost

of data movement, it does not consider how data movement

introduced at the beginning of the program might affect later

parts of the program [47].

HECO’s Approach. HECO’s batching transformation

starts with the core idea of the strawman approach, i.e., batch-

ing vectors of secrets into ciphertexts but eliminates the over-

head of emulating insert/extract operations for batching

amenable programs. Rather than directly emulating these op-

erations, we instead translate the homomorphic operations in

which they appear as operands. While this still requires insert-

ing rotation operations, it allows operations with compatible

index access patterns to be mapped to the same emulated code

if using an appropriate algorithm. As a result, a simple built-in

simplification pass can eliminate the duplicates. In the case

of well-structured programs, this can completely eliminate

emulation related code. For example, for the program from

the previous section (Listing 3a), HECO produces exactly the

optimized code seen in Listing 3b, which does not contain

any emulation-related code.

HECO Batching Pipeline. HECO’s batching transforma-

tion is composed of a series of smaller passes, each interleaved

with built-in simplification passes. Before the main batching

passes, we first perform a series of preprocessing steps that

unroll statically-sized loops, merge sequential associative bi-

nary operations into n-ary group operations, and perform a

type conversion from vectors of secrets to BatchedSecrets,

which are HECO’s high-level abstraction of ciphertexts. Fol-

lowing this, the main pass walks through the program and

transforms each operation over secret vector elements into

operations over entire vectors. Similar to the strawman ap-

proach, this involves introducing rotations, but our approach

does not require multiplications with masks. Additionally, the

way we perform these translations allows us to ‘chain’ them

so that consecutive operations on the same vector elements do

not result in separate emulation code. After the main pass and

the associated simplification pass, we apply the rotate-and-

sum technique where applicable, which is enabled by both the

merging of operations during the preprocessing phase and the

exposure of same-ciphertext operations by the main pass. In

the following, we first outline some key preprocessing steps

before explaining the two main optimization steps.

4.3 Preprocessing

In addition to standard simplifications and canonicalization of

the IR (i.e., bringing operations into a standardized ‘canonical’

form to reduce the complexity of the IR), we also apply two

more specialized transformations.

Merging Arithmetic Operations. During the preprocess-

ing stage, we combine chained applications of (associative and
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commutative) binary operations into larger arithmetic opera-

tions with multiple operands (e.g., merging x=a+b; y=x+c to

y=a+b+c). This removes chains of dependencies and replaces

them with a single operation, making it easier to identify

rotate-and-sum optimization opportunities. In addition, it can

also allow more efficient direct lowerings, such as when per-

forming the product over n elements: which can be lowered

efficiently to a multiplication tree with depth logn.

Type Conversion. While tensors can be arbitrarily

(re)shaped, all FHE ciphertexts used in a homomorphic com-

putation must have compatible parameters, which implies a

fixed number of slots. Therefore, we perform type conver-

sion, converting all vector operations over secret values to

operations over the BatchedSecret type, an abstract repre-

sentation of ciphertexts. We convert multi-dimensional ten-

sors to vectors using column-major encoding and scale up

any secret vector operands to the size of the largest (secret)

vector present, padding the plaintext as necessary. This does

not impact the result of the computation, as the existing code

will never access these additional elements.

4.4 Automatic SIMD-fication
This pass replaces scalar operations over vector elements (e.g.,

x[i] + y[j]) with SIMD operations, applying the same op-

eration to each element of the ciphertext. At its core, the pass

is a linear walk over all (arithmetic) homomorphic operations

in the program, as seen in Algorithm 2. For each operation,

we (i) identify in which ciphertext slot the result should be

computed (ii) transform the operands so that they are suitable

for such a SIMD-operation, and (iii) insert extract opera-

tions in situations where a scalar is expected (including uses

in later operations that have yet to be transformed). Note

that, by itself, this transformation does not actually remove

any code. However, it will expose common patterns (e.g.,

such as those occurring in loops) and cause operations over

compatible indices to be translated to the same SIMD opera-

tions. This allows the following clean-up pass to remove these

now-redundant operations, which frequently includes dupli-

cate arithmetic operations and many or all of the operations

inserted to ensure consistency.

Target Slot Selection. When translating an operation with

operands corresponding to different vector positions (e.g.,

x[i]+y[j]), we must bring the elements of interest into align-

ment by issuing a rotation for at least some of the operands.

However, there are usually multiple valid solutions (e.g.,

rot(x, j-i) vs. rot(y, i-j)), especially for operations

with multiple operands, which occur frequently as a result of

our preprocessing stage An obvious approach would be to

rotate each operand (e.g., x[i]) so that the element of interest

is moved to slot 0. Then, performing the SIMD operation

over the rotated operands produces the result in the same slot.

Algorithm 2 Batching Pass

1: Algorithm BatchPass(G)
2: V ,E ← G
3: foreach op ∈ V ∧ type(op) = fhe.secret:
4: ts← SelectTargetSlot(op,V ,E)
5: OperandConversion(op, ts,V ,E)
6: foreach v ∈ V ∧ (op,v) ∈ E :
7: u← fhe.extract[v, ts]
8: Replace(v,u,V ,E)
9: procedure SelectTargetSlot(op,V ,E)

10: foreach v ∈ V ∧ (op,v) ∈ E :
11: switch v:
12: case fhe.insert[_, i]: return i
13: case func.return: return 0

14: foreach v ∈ V ∧ (v,op) ∈ E :
15: switch o:
16: case fhe.extract[_, i]:
17: return i
18: return ⊥
19: procedure OperandConversion(op, ts,V ,E)
20: foreach v∈V ∧(v,op)∈E∧type(v) = fhe.secret:
21: switch v:
22: case fhe.extract(x, i):
23: u← fhe.rotate(x, i− ts)
24: Replace(v,u,V ,E)
25: case fhe.ptxt[p]:
26: p′ ←Repeat(p)
27: u← fhe.ptxt(p′)
28: Replace(v,u,V ,E)
29: procedure Replace(v,u,V ,E)
30: V ← (V \{v})⋃{u}
31: foreach w ∈ V ∧ (v,w) ∈ E :
32: E ← (E \{(v,w)})⋃{(u,w)}
33: foreach w ∈ V ∧ (w,v) ∈ E :
34: E ← (E \{(w,v)})⋃{(w,u)}

While this approach is straightforward and correct, it is unsuit-

able for an optimizing compiler, as it does not set the program

up for further simplification. For example, in the case of a

loop for i in 0..10: z[i]=x[i]+y[i]), each iteration

would result in a unique operation with distinct operands,

each rotated by different amounts.

Instead, HECO introduces the notion of a target slot, de-

termined by the further uses of the result. For example, if the

result of a computation is assigned to z[k], we select k as the

target slot, eliminating the rotation required afterward. If no

clear target slot can be derived from the uses of the result, we

use one of the operand indices as the target slot, removing

the need to rotate that operand. Selecting the target slot this

way reduces the immediate number of rotation operations

created. More importantly, it reliably maps operations with

the same relative index access patterns to the same set of ro-
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tations and SIMD operations, allowing them to be eliminated

by the following simplification pass. Since this approach is

based purely on index access patterns, it works equally well

for complex loop nests and heavily interleaved code.

Operand Conversion. In order to convert a scalar opera-

tion to a fully-batched SIMD operation, all non-batched inputs

must be converted, as described in Algorithm 2 (OPERAND-

CONVERSION). Note that, due to the linear-walk nature of

the pass, all previous FHE operations have already been con-

verted to fully-batched operations. As a result, any operand

of type fhe.secret must be the result of an fhe.extract
operation. This invariant allows us to ‘chain’ batched opera-

tions together by replacing the extraction-based operand with

a rotation-based operand. Specifically, an operand extracted

from slot i of vector x, is replaced with a rotation of x by i− ts,

where ts is the target slot determined before.

Ensuring Consistency. We maintain the consistency and

correctness of the program at each step of the optimization.

Towards this, we first construct the new rotations and batched

operations as additions to the program. We only replace oc-

currences of the old operation with the optimized version

after we replace uses of the old operation with an extract
operation that extracts the target slot of the new batched result.

This ensures that, even if no further batching opportunities

are found, the program remains correct. Since batched FHE

schemes do not support true scalar values, we simply interpret

scalars as ciphertexts where only slot 0 contains valid data.

With this convention, any remaining extractions will eventu-

ally be converted to a rotation by −ts. However, in practice,

this is rare as most of the extract operations we insert will

in turn be converted to rotations when the next homomorphic

operation is processed. As a result, these consistency-related

extract operations are frequently eliminated completely at

the end of the batching pass.

4.5 Rotate-and-Sum Pass
After the main pass and the associated simplification pass, we

apply the rotate-and-sum technique where applicable. Since

this optimization requires a holistic view of the operation,

this would be significant if we did not merge sequential op-

erations during preprocessing. While we used a sum over

all elements when explaining the technique in the previous

section, the technique can be generalized to any subset with a

consistent stride. Additionally, it can also be used to compute

products rather than sums. When applied to multiplication,

it additionally has the benefit of automatically reducing the

multiplicative depth of the expression as a side-effect.

Note that the pre-processing combination of binary opera-

tions into larger operations must happen before the main pass

described above, as that pass would otherwise insert rotations

between the different operations, making them no longer di-

rectly chained. The actual translation to a series of rotations

and native binary operations, meanwhile, has to be performed

after that pass, since it requires the operands to be entire ci-

phertexts, rather than scalars. Additionally, the de-duplication

simplifications that can take place after the batching transfor-

mation can widen the applicability of this transformation by

reducing the number of distinct ciphertexts appearing in the

program.

5 Implementation

We build HECO on top of the open-source MLIR frame-

work [7], which is rapidly establishing itself as the go-to tool

for domain-specific compilers and opening up the possibil-

ity of exchanging ideas and optimizations even beyond the

FHE community. HECO consists of roughly 15k LOC of

C++, with around 2k LOC of Python for the Python front-

end. HECO uses the Microsoft Simple Encrypted Arithmetic

Library (SEAL) as its FHE backend. SEAL, first released

in 2015, is an open-source FHE library implemented in C++
that is thread-safe and heavily multi-threaded itself. SEAL

implements the BFV, BGV and CKKS schemes.

In contrast to existing monolithic compilers, HECO is

highly modular and designed to be flexible and extensible.

We decouple optimizations from front-end logic, allowing for

a wide variety of domain-specific front-ends and the ability to

easily replace back-ends to target different FHE libraries or

hardware accelerators as they become available. The toolchain

can easily be adapted to different needs, with certain optimiza-

tions enabled or disabled as required.

6 Evaluation

HECO is designed to compile high-level programs, written

by non-experts in the standard imperative paradigm, into

highly efficient batched FHE implementations that achieve

the same performance as hand-crafted implementations by

experts. HECO achieves its usability goals through a well-

integrated Python front-end and by requiring developers to

alter their code only minimally (annotating variables as se-

cret). However, ease-of-use becomes moot when the perfor-

mance of the generated code is not competitive. Therefore,

we focus our evaluation on the performance of HECO and the

code it generates, trying to answer whether or not automatic

optimizations can bring naive code to the same performance

level as expert implementations. In this section, we first show

the effect of the batching optimizations on benchmark work-

loads designed to demonstrate different batching patterns,

then compared against synthesized optimal batching patterns,

and finally discuss a real-world application example.
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(d) Hamming Distance benchmark memory usage (in MB).

Figure 5: Log-log plot of the runtime and memory consumption of the roberts cross and hamming distance benchmarks for

different vector sizes, comparing a naive non-batched solution with the batched solution generated by our system.

6.1 Benchmarks
We evaluate HECO in terms of the speedup reduction in mem-

ory overhead gained over non-optimized implementations and

the compile time required.

Applications. We demonstrate the speedup achieved by our

batching optimization on two applications that are represen-

tative of common batching opportunities. The roberts cross
operator is an edge-detection feature used in image process-

ing. It approximates the gradient of an image as the square

root of the sum-of-squares of two different convolutions of the

image, which compute the differences between diagonally ad-

jacent pixels. As in all other kernel-based benchmarks, wrap-

around padding is used, which aligns well with the cyclical

rotation paradigm of FHE. In order to enable a practical FHE

evaluation, the final square root is omitted, since it would

be prohibitively expensive to evaluate under encryption. The

hamming distance, meanwhile, computes the edit distance

between two vectors, i.e., the number of positions at which

they disagree. Here, we consider two binary vectors of the

same length, a setting in which computing (non-)equality

can be done efficiently using the arithmetic operations avail-

able in FHE. Specifically, this makes use of the fact that

NEQ(a,b) = XOR(a,b) = (a−b)2 for a,b ∈ {0,1}.
Baseline. Our baseline is a naive implementation of the ap-

plication without taking advantage of batching, as one might

expect FHE novices to implement. In this setting, vectors of

secrets are directly translated to vectors of ciphertexts. While

this approach introduces significant ciphertext expansion and

increases the memory required, it is actually preferable in

terms of run time over a solution that batches vector data

into ciphertexts, but does not re-structure the program to be

batching-friendly. This is because such a solution adds the

overhead of rotations, masking, etc., to the base runtime of

the non-batched solution.

Environment. All benchmarks are executed on AWS

m5n.xlarge instances, which provide 4 cores and 16 GB

of RAM. We used Microsoft SEAL [6] as the underlying

FHE library, targeting its BFV [14, 15] scheme implemen-

tation. All experiments are run using the same parameters,

which ensure at least 128-bit security. We report the run time

of the computation itself, omitting client-side aspects such as

key generation or encryption/decryption. All results are the

average of 10 iterations, discarding top and bottom outliers.

Runtime & Memory Overhead. In Figure 5a we show the

runtime of the Roberts Cross benchmark for varying instance

sizes, comparing the non-batched baseline with the batched

solution generated by HECO. While the run time of the naive

version increases linearly with the image size, the batched

solution maintains the same performance (until parameters

must be increased to accommodate even larger images). In-

stead, the run time is more closely tied to the size of the kernel

than to that of the image. This highlights the dramatic trans-

formations achieved by HECO, fundamentally changing the

structure of the program. As a result of these transformations,

HECO achieves a speedup of 3454x over the non-batched

baseline for 64x64 pixel images, demonstrating the extraordi-

nary impact that effective use of batching can have on FHE

applications: while the non-batched solution is borderline im-

practical at over two minutes, the batched solution takes only
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a fraction of a second (0.04 s). The runtime of the generated

code in this case does depend directly on the vector length.

However, due to the fold-style optimization (cf. § 4.5), this

dependence is only logarithmic.

In Figure 5d we can see that, for realistic problem sizes,

the performance advantage of batching becomes significant,

resulting in a speedup of 934x for 4096-element vectors. We

also see that, while the runtime of the batched solution does

increase with the vector length, this is nearly imperceptible

when compared to the non-batched baseline. Finally, in Fig-

ure 5c/5b, we show the memory overhead of the non-batched

baseline and the batched solution. While FHE introduces a

non-negligible baseline overhead due to the large amount

of key- and other context-data that must be maintained, the

reduced number of ciphertexts in the batched solution has a

clear impact on memory usage, increasingly so as the problem

sizes increase.

Compile Time. HECO achieves these fundamental trans-

formations efficiently, with compile times that are amenable

to interactive development. This is in contrast to synthesis-

based tools, which require more than 10 minutes to synthesize

a batched solution for the Roberts Cross benchmark even for

toy-sized instances and do not scale to the sizes we consider

here at all [44].

6.2 Comparison with Synthesized Solutions

We compare the baseline and HECO to synthesized optimal

batching patterns. Synthesis based approaches explore the

space of all possible programs, constrained by a reference

specification describing input-output behavior. While this

tends to be computationally expensive, it has the potential

to find optimal solutions featuring highly non-intuitive opti-

mizations. We use a set of nine benchmark applications that

represent a variety of common code patterns relevant to batch-

ing for our evaluation. These programs range from having

no inter-element dependencies (e.g., Linear Polynomial), to

simple accumulator patterns (e.g., Hamming Distance), and

complex dependencies across a multitude of different vector

elements (e.g., Roberts Cross). As a result, they provide a use-

ful benchmark, especially for batching optimizations. These

benchmarks were first proposed in [44], which introduces

Porcupine [44], a synthesis-based compiler for batched FHE.

In addition to a reference specification, it requires a developer-

provided sketch of an initial possible batched approach. Our

‘synthesis’ solutions are based on pseudo-code made available

in an extended version of the paper [44].

Synthesis based tools can require the significant search

time to find solutions, limiting them to toy-sized workloads.

For example, Porcupine requires over 10 minutes to synthe-

size a program with ten instructions and will fail to synthesize

a solution at all for sufficiently complex programs. As a result,

n 4 16 64 256 1024 4096

rc 0.06 0.07 0.08 0.12 0.30 1.28

hd 0.03 0.04 0.06 0.09 0.25 1.85

Table 1: Compile time (in seconds) of the Roberts Cross

(rc) and Hamming Distance (hd) benchmarks for different

problem sizes (n).

we consider the following problem sizes here: The synthe-

sized dot-product code targets 8-element vectors, while those

for Hamming Distance and L2 Distance were provided for

4-element vectors. For the other applications, we use vectors

of length 4096, representing 64x64 pixel images

As we can see from Figure 6, HECO dramatically improves

performance over the non-batched baseline approach. For ex-

ample, for the Roberts Cross benchmark, our batched solution

is over 3500 times faster than the non-batched solution, taking

less than 0.04 seconds instead of over 2.35 minutes. More

importantly, our results are nearly equivalent to the optimally

batched solutions synthesized by Porcupine, especially when

considering the stark contrast between the non-batched and

the two batched solutions. In some cases (e.g., Box Blur),

Porcupine has an advantage because it finds non-intuitive so-

lutions beyond traditional batching patterns. Interestingly, for

some applications (e.g. Hamming Distance) HECO actually

outperforms Porcupine. This is because Porcupine provides

an optimally batched solution but does not necessarily han-

dle ciphertext management optimally, inserting unnecessary

relinearization operations.

6.3 Real-World Application
The previous benchmarks demonstrated HECO’s effective-

ness and performance for different and common batching pat-

terns. We now evaluate an application that more closely resem-

bles the complexity that real-world settings exhibit. Specifi-

cally, we consider an application computing private statistics

over two databases that might contain duplicate entries. We

use this to demonstrate that HECO can produce efficient FHE

code for non-trivial programs, while also highlighting that

there is further room for optimizations exploiting application

semantics.

Application. Privacy regulations frequently prohibit enti-

ties from combining sensitive datesets directly. Instead, they

could employ threshold FHE, which extends FHE with multi-

party key generation, to securely compute on the (encrypted)

joint dataset. In this setting, neither party has sole access to

the secret key, and they must collaborate to decrypt the re-

sults of approved queries. However, in practice their datasets

might overlap (e.g., agencies at different levels of government

collecting similar data), introducing duplicate items into the

joint dataset. Due to the duplicates, analytics (e.g., counting
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Figure 6: Runtime of example applications (in seconds), comparing a naive non-batched baseline, the solution generated by our

system (HECO), and an optimally-batched solution synthesized by the Porcupine tool.

queries) will return incorrect results. Therefore, we must first

de-duplicate the encrypted databases before executing the

analytics. Since threshold FHE does not affect the server-side

execution of the computation, HECO can be used directly to

develop such an application. This first computes the Private
Set Union (PSU) of two databases A,B indexed by unique IDs

consistent across both (e.g., a national identifier like the SSN).

For simplicity, we consider databases with one data column

and a simple SUM aggregation. However, the presented ap-

proach trivially extends to larger databases and more complex

statistics. Listing 5 shows the application expressed using the

HECO Python frontend, for a database size of 128 elements

and 8-bit identifiers. We split the identifiers into individual

bits, allowing us to compute the equality function even while

working with arithmetic circuits. The program begins by ag-

gregating A’s data and then proceeds to check each element of

B’s database for potential duplicates in A. In order to compute

the equality function, we compute
∧

k ak⊕bk, using the fact

that, for inputs a,b∈ {0,1}, xor can be computed as (a−b)2,

and directly via multiplication, and not as 1−a. If a duplicate

is found, the element of B is multiplied with unique == 0,

i.e., it does not contribute to the overall statistics.

Performance & Discussion. We evaluated both a naive

baseline and the HECO-optimized batched implementation

using the same setup described earlier in this section. The

naive approach has a run time of several minutes (11.3 min)

and requires the sending of over 2000 ciphertexts between

the server and the clients. The batched solution produced

by our system requires not only significantly less data to be

transmitted (only 4 ciphertexts), but also runs an order of

magnitude faster (57.6 s), confirming the trend we observed

when evaluating on smaller benchmarks. While the results

achieved by HECO are more than practical already, a state-

of-the art hand-written implementation designed for this task

can improve this even further, requiring only 1.4 s. However,

arriving at this solution requires a significant rethinking of the

program and an application-specific batching pattern, which

HECO intentionally does not consider to avoid a search space

explosion. Note that synthesis based tools such as Porcupine

also cannot capture these kinds of transformations.

1 def encryptedPSU(a_id: Tensor[128,8,Secret[int]],
2 a_data: Tensor[128,Secret[int]],
3 b_id: Tensor[128,8,Secret[int]],
4 b_data: Tensor[128,Secret[int]])
5 -> Secret[int]:
6 sum: Secret[int] = 0
7 for i in range(0, 128):
8 sum = sum + a_data[i]
9 for i in range(0, 128):

10 unique: Secret[int] = 1
11 for j in range(0, 128):
12 # compute a_id[i] /= b_id[j]
13 eq: sf64 = 1
14 for k in range(0, 8):
15 # a xor b == (a-b)^2
16 x = (a_id[i][k] - b_id[j][k])**2
17 nx = 1 - x # not x
18 eq = eq * nx # eq and nx
19 neq = 1 - eq # not eq
20 unique = unique * nequal
21

22 sum = sum + unique * a_data[i]
23 return sum

Listing 5: Computing statistics over duplicated data.

Specifically, instead of batching the identifiers for each

database into a single ciphertext, the expert solution instead

creates one ciphertext per bit, using significantly oversized

ciphertexts with 1282 = 214 slots. This enables the expert so-

lution to batch every possible permutation of the identifier set

into one ciphertext. By applying this to the encryption of set

B, while simply encrypting 128 non-permuted repetitions of

set A, the expensive (n2) duplication check can be performed

in parallel on all elements at the same time. Computing the

unique flag then uses a rare application of the rotate-and-

multiply pattern. As a trade-off, the equality computation is

no longer batched, but since the number of bits in the iden-

tifiers is, by necessity, at most logarithmic in the number of

database elements, this is a profitable trade-off.

In general, exploiting application-specific packing patterns

can unlock additional performance gains and is a frequently

combined with client-side processing in expert-designed FHE

systems. However, the decision on which client-side process-

ing (e.g., removing outliers, computing permutations, etc) is
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sensible is not a well-defined problem that automated solu-

tions can tackle. At the same time, the performance improve-

ments demonstrated by HECO provide a first jump from the

regime of prohibitive overheads to one of practical solutions.

While further optimizations are likely frequently possible,

they offer quickly diminishing returns. For example, scaling

this application to real-world sizes (which, incidentally, is

more complex with the expert approach) means that a naive

solution might take days to compute while HECO’s solution

would complete in a few hours, which is a reasonable runtime

for these kinds of secure statistics.

7 Related Work

In this section, we briefly discuss related work in the do-

main of FHE compilation (§ 7.1) followed by a discussion of

differences to existing Multi-Party Computation (MPC) and

Zero-Knowledge Proofs (ZKP) compilers (§ 7.2).

7.1 FHE Compilers
The complexity of implementing FHE operations efficiently

led to the development of dedicated libraries [6, 48] early on.

Today, a large number of libraries provide efficient imple-

mentations of state-of-the-art schemes. These libraries mostly

provide comparatively low-level APIs that allow developers

to extract the best possible performance but require significant

expertise to utilize effectively. As a result, a first wave of FHE

tools and compilers emerged that tried to improve the usabil-

ity of FHE [31, 37, 49–51]. These mostly target a circuit-level

abstraction and are focused on circuit optimizations [31].

For example, Microsoft’s EVA [37] offers a user-friendly

high-level interface and automatically inserts ciphertext main-

tenance operations into the circuit. EVA uses a custom circuit-

based IR and requires developers to manually map their pro-

gram to the FHE programming paradigm. In order to ease

this process, recent versions [36] include a library of expert-

implemented batched kernels for frequently used patterns,

e.g., summing all elements in a vector. However, this still

requires developers to manually transform an application to

the batched paradigm.

A series of tools including Cingulata [33], E3 [51], SyFER-

MLIR [52], and Google’s Transpiler [53] attempt to trans-

late arbitrary programs without the usual restrictions of FHE.

They achieve this by translating their input programs into

binary circuits, encrypting each input bit individually. How-

ever, programs translated in this way are virtually always too

inefficient to be of practical use because they do not support

the type of high-level transformations that HECO employs to

achieve practical efficiency.

Domain-specific compilers [54–56], e.g., targeting en-

crypted Machine Learning applications, rely on a large set

of hand-written expert-optimized kernels for common func-

tionality (mostly linear algebra operations). Since these tools

rely on pre-determined mappings rather than automatically

identifying optimization opportunities, they do not transfer

to other domains, such as the general-purpose setting HECO

targets. Besides that, their lack of flexibility prevents their use

when developers’ needs are even slightly misaligned.

The Porcupine compiler [44] is closest to our work in that

it also considers translating imperative programs to FHE’s

batching paradigm. However, their tool has a significantly

different focus, using a heavy-weight synthesis approach that

tries to identify optimal solutions that can outperform even

state-of-the-art approaches used by experts. Since it explores

a large state space in the search for an optimal solution, com-

pile times tend to be long (up to many minutes) and programs

can contain at most a handful of statements before the ap-

proach becomes infeasible. Additionally, Porcupine requires

that developers provide a sketch of the structure of the batched

program, making it less suitable for non-expert users.

Finally, we want to highlight that the MLIR framework

is rapidly establishing itself as the gold standard for FHE

tooling. Early attempts such as SyFER-MLIR [52] relied

primarily on built-in optimizations, adding only a few binary-

circuit-based FHE-specific rewrite rules. No evaluation is

provided for SyFER-MLIR, but prior work studying similar

simple rewrite rule-based tools [31] leads us to predict that it

would produce only relatively minor speedups. More recently,

however, a variety of concurrent work has successfully real-

ized different aspects of the FHE ecosystem using MLIR. For

example, Zama’s Concrete-ML [57] internally uses an MLIR-

based compiler to translate Machine Learning tasks expressed

as Numpy programs to the TFHE scheme. HECATE [58],

meanwhile, improves upon the rescale-allocation optimiza-

tions presented in the EVA compiler [37]. However, where

the latter uses a custom Python implementation that does not

provide for interoperability with other tools, HECATE builds

upon common MLIR abstractions. Thanks to the modular

nature of MLIR, these tools could easily be integrated into

HECO’s end-to-end toolchain.

7.2 MPC & ZKP Compilers

Compilers for both Multi-Party Computation (MPC) and Zero-

Knowledge Proof (ZKP) systems face similar challenges to

FHE compilation, such as the need for data-independent com-

putations and a general tendency towards trying to achieve

small and low-depth circuits. However, in practice we find

these similarities are too superficial to allow techniques from

one domain to be lifted to another. Due to the heavy reliance

on selectively revealing (potentially blinded) data during an

MPC computation – a feature that has no direct correspon-

dence in FHE – many of the optimization approaches are

unlikely to transfer. State-of-the art MPC compilers [59, 60]

also frequently make heavy use of hybrid approaches, i.e.,

switching between different MPC settings. While there has

been significant work on scheme switching for FHE [25, 26],
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practical applications remain rare and few libraries currently

support these techniques. As these approaches start to mature,

investigating to what extent scheme-switching optimizations

from the domain of MPC can transfer to FHE will present an

interesting avenue for future work.

Zero-Knowledge Proof Compilers also face the challenge

of mapping complex operations to arithmetic circuits with

limited expressiveness. However, their setting fundamentally

differs from that of FHE, as the prover generally has access

to all data in the computation in the clear. This allows ZKP

computations to heavily rely on witness-based computation,

which allows compilers to shift virtually all non-arithmetic

operations outside the core ZKP computation. Additionally,

ZKP compilers mostly use intermediate representations based

on Rank-1 Constraint Systems (R1CS) or other constraint

specification systems that are not suitable for expressing FHE

computations. Finally, we note that compiler frameworks try-

ing to accommodate MPC, ZKP and potentially also FHE are

emerging [61]. However, their reliance on a circuit-like IR

makes them unsuitable for the high-level transformations we

use in our work.

8 Discussion

As FHE has emerged into practicality, it has drawn the interest

of a significantly wider audience bringing new perspectives,

requirements and backgrounds to the area. While tradition-

ally, FHE applications were mostly developed by the same

experts that designed, optimized and implemented the un-

derlying cryptographic schemes, this will soon no longer be

true beyond the world of cutting-edge academic research. In

recent years, a variety of tools has emerged in an attempt

to address the needs of future non-expert developers. While

some domain specific tools have proven to be very effec-

tive [31, 56, 62], most general purpose tools have fallen short

of delivering on the promise of usable FHE. While they sim-

plify the development process, they generally produce naive

implementations which provide little real-world benefit due

to their significant overhead compared to more optimal im-

plementations. However, as performance is key for practical

deployment, we believe that usability without sufficient per-

formance is mostly meaningless.

HECO aims to bridge the gap between usability and per-

formance for general-purpose workloads. It offers non-expert

developers the ability to express applications in a familiar

high-level paradigm without paying the extreme performance

penalty this would usually incur. Beyond optimizing this

high-level transformation, HECO proposes a new end-to-

end architecture for FHE compilers based on the distinct

stages of FHE optimization we identify. HECO’s modular

architecture is designed to allow it to interoperate with other

toolchains and easily integrate future optimization techniques.

While HECO represents an important step in FHE usability,

many challenges remain to be addressed. For example, HECO

considers RLWE-based schemes offering SIMD operations,

but recent developments in LWE-based fast-bootstrapping

schemes makes them an attractive alternative. Today, these

worlds remain mostly separate and use significantly different

paradigms. Future work needs to consider how to unify these,

especially in the context of scheme-switching, i.e., the ability

to move between schemes inside a single application. Finally,

upcoming dedicated FHE hardware accelerators promise to

deliver significant performance improvements but require so-

phisticated scheduling to unlock their potential. While ex-

isting work on accelerators already incorporates automated

scheduling, there are likely significant further optimization

opportunities in considering compilation for these systems

from an end-to-end perspective. More generally, we believe

that there is significant potential for interdisciplinary research

that combines techniques from compiler and programming

language research with insights from cryptography.
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